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The HP-model

Suggested by Dill, Chan and Lau in the late
1980ies. In this simplified model, a
conformation is a self-avoiding walk (SAW) on
a given lattice in 2 or 3 dimensions. Each bond
is a straight line, bond angles have a few
discrete values. The 20 letter alphabet of
amino acids (monomers) is reduced to a two
letter alphabet, namely H and P. H represents
hydrophobic monomers, P represents
hydrophilic or polar monomers.

Advantages:
m lattice-independent folding algorithms
m simple energy function

m hydrophobicity can be reasonably modeled
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Lattice proteins
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Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of
the (free) energy versus the conformational degrees of freedom.

dim | Lattice Type u b4
Number of lattice protein structures 5Q 2.63820 | 1.34275
2 TRI 4.15076 1.343
noy-1 HEX 1.84777 1.345
Ch~ 7N sc 468391 | 1.161
problem is NP-hard 3 BCC 6.53036 1.161
FCC 10.0364 1.162

Formally, three things are needed to construct an energy landscape:
m A set X of configurations

m a notion 901 of neighborhood, nearness, distance or accessibility on
X, and

m an energy function f: X — R toi



The move set
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m For each move there must be an inverse move
m Resulting structure must be in X
m Move set must be ergodic



Low-energy states of lattice proteins







Kinetic Folding Algorithm

Simulate folding kinetics by a rejection-less Monte-Carlo type
algorithm:

Generate all neighbors using the move-set

Assign rates to each move, e.g.
) AE
P; = min {l,exp <_ﬁ> }

Select a move with probability proportional to its rate
Advance clock 1/Y; P;. °




Dynamics of biopolymers

The probability distribution P of structures as a function of time is ruled
by a set of forward equations, also known as the master equation

chtltSX) = Zy#X[Pf(y)kxy - Pt(X)kyX]

Given an initial population distribution, how does the system evolve in
time? (What is the population distribution after n time-steps?)

4p.=UP, — P,=eVP



Barrier tree kinetics

For a reduced description we need

m macro-states that form a partition of full configuration space

m transition rates between macro-states, e.g.

rpe = Lo €xp <_(EEa - Ga)/kT) or
—AE
_ e IfAE>0
1o = Lyep Lxea yxProblx|a]  for a# B with rx=<{ 0 yEN(x)
1

All relevant quantities can be computed via the flooding algorithm.



Dynamics of lattice proteins: HEX lattice

NNHHPPNNPHHHHPXP n = 16
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Dynamics of lattice proteins: TET lattice

NNHHPPNNPHHHHPXP n = 16
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Dynamics of lattice proteins: TRI lattice

NNHHPPNNPHHHHPXP n = 16

\ ‘ '
8 —
2
L - 33 4
08 -
— 32
> — 32 (pinfold)
8 o6 B
=
S
< 04 B
2
2
g
02 . -
ot i | e T i L v
¥R 10° 10° 10° 10 10° 10°
‘ ime




Conclusion

m Discrete models allow a detailed study of the energy surface.

m Barrier trees approximate the landscape topology and folding
kinetics.

m A macrostate approach of folding kinetics reduces simulation time
drastically.

m The accuracy of the model is mostly sufficient for lattice proteins.

This newly generated framework provides a powerful method for
further refinement of biopolymer folding landscapes.
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