Energy Landscapes of Lattice Proteins

Michael Wolfinger

Institute for Theoretical Chemistry University Vienna

July 26, 2005

The HP-model

Suggested by Dill, Chan and Lau in the late 1980ies. In this *simplified model*, a conformation is a *self-avoiding walk (SAW)* on a given lattice in 2 or 3 dimensions. Each bond is a straight line, bond angles have a few discrete values. The 20 letter alphabet of amino acids (monomers) is reduced to a two letter alphabet, namely **H** and **P**. H represents hydrophobic monomers, P represents hydrophilic or *polar* monomers.

Advantages:

- lattice-independent folding algorithms
- simple energy function
- hydrophobicity can be reasonably modeled

FRRLLFLF

Lattice proteins

НРНРНННРРНННРНРН n=16

$$E = -15$$

$$E = -16$$

	Н	Ρ	Ν	X
Η	-4	0	0	0
Ρ	0	1	-1	0
Ν	0	-1	1	0
X	0	0	0	0

Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$
 problem is NP-hard

1	dim	Lattice Type	μ	γ
		SQ	2.63820	1.34275
	2	TRI	4.15076	1.343
		HEX	1.84777	1.345
		SC	4.68391	1.161
	3	BCC	6.53036	1.161
		FCC	10.0364	1.162

Formally, three things are needed to construct an energy landscape:

- A set X of configurations
- lacktriangle a notion ${\mathfrak M}$ of neighborhood, nearness, distance or accessibility on X, and
- an energy function $f: X \to \mathbf{R}$

The move set

- For each move there must be an inverse move
- Resulting structure must be in X
- Move set must be *ergodic*

Low-energy states of lattice proteins

LP Energy Landscape

Kinetic Folding Algorithm

Simulate folding kinetics by a rejection-less Monte-Carlo type algorithm:

Generate all neighbors using the move-set

Assign rates to each move, e.g.

$$P_i = \min\left\{1, \exp\left(-rac{\Delta E}{kT}
ight)
ight\}$$

Select a move with probability proportional to its rate Advance clock $1/\sum_i P_i$.

Dynamics of biopolymers

The probability distribution P of structures as a function of time is ruled by a set of forward equations, also known as the master equation

$$\frac{dP_t(x)}{dt} = \sum_{y \neq x} [P_t(y)k_{xy} - P_t(x)k_{yx}]$$

Given an initial population distribution, how does the system evolve in time? (What is the population distribution after n time-steps?)

$$\frac{d}{dt}P_t = \mathbf{U}P_t \implies P_t = e^{t\mathbf{U}}P_0$$

Barrier tree kinetics

For a reduced description we need

- macro-states that form a partition of full configuration space
- transition rates between macro-states, e.g.

$$\begin{split} r_{\beta\alpha} &= \Gamma_{\beta\alpha} \exp\left(-(E_{\beta\alpha}^* - G_{\alpha})/kT\right) \quad \text{or} \\ r_{\beta\alpha} &= \sum_{y \in \beta} \sum_{x \in \alpha} r_{yx} \text{Prob}[x|\alpha] \quad \text{for } \alpha \neq \beta \text{ with } r_{yx} = \left\{ \begin{array}{ll} e^{\frac{-\Delta E}{kT}} & \text{if } \Delta E > 0 \\ 0 & y \notin \mathcal{N}(x) \\ 1 \end{array} \right. \end{split}$$

All relevant quantities can be computed via the flooding algorithm.

Dynamics of lattice proteins: HEX lattice

Dynamics of lattice proteins: TET lattice

Dynamics of lattice proteins: TRI lattice

Conclusion

- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- The accuracy of the model is mostly sufficient for lattice proteins.
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.

Thanks

Peter Schuster
Peter Stadler
Ivo Hofacker
Christoph Flamm

