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Problem setting

• Given: Simple graph G(V, E)

• Wanted: Cycle length distribution

How many cycles of length h does the graph contain?
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Outline

• Motivation: growth exponents, model validation

• Method: Markov chain Monte Carlo in cycle space

• Problem: find ergodic move set

• Energy landscapes
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Motivation (1): model verification

Verification of graph models

• Internet, WWW

• social and economic (trade) networks

• metabolic and gene regulatory networks

• protein-protein interaction (PPI) networks

• . . .
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Cycles in real network and model

PPI network of bacterium H. Pylori compared with instances

from duplication-divergence model (Vázquez et al., 2003).
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Motivation (2): growth exponents

Consider graphs growing by iterative addition of nodes and

edges. Average cycle length increases as

〈h〉 ∼ Nα

as a function of graph size N , with exponent

α ∈ [0,1]

characteristic of the growth rule.
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Cycle lengths in growing 2-tree
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Growth under different rules
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Markov chain Monte Carlo in cycle space

• microstate = cycle

• Markov step = addition of “detour” to current cycle.

• But: Sum of two cycles is not necessarily a cycle.
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The algorithm (β = 0)

1. Choose generating system M of cycle space

2. Set initial cycle C0 := 0 (empty cycle) and t = 0

3. (Propose) Draw random element P ∈ M

4. (Accept) If C + P is a simple cycle or empty, set Ct+1 :=

Ct + P

(Reject) Otherwise, set Ct+1 = Ct

5. Increment t and resume at 3 (or stop if desired chain length

reached)
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Ergodicity and the generating system M

Ergodicity of the Markov process is ensured if each cycle is a

sum of cycles in M such that each partial sum is also a cycle:

Generating system M of cycle space of G is ergodic if

For all cycles C in G there are t ∈ N and (C1, C2, . . . , Ct) ∈ M t

such that for all i ∈ {1, . . . t}

Si :=
i

∑

j=1

Cj

is a cycle and

C = St .

Problem: Find possibly small ergodic M .

11



M = set of chordless cycles (1)

• A cycle C is chordless if there is W ⊆ V such that C is the

subgraph induced by W .

• The set of all chordless cycles is an ergodic generating sys-

tem of cycle space.
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M = set of chordless cycles (2)

• decomposition into shorter and shorter cycles

⇒ energy (=length) landscape without local minima

• But: set of chordless cycles can be too large to be generated

beforehand

• example: square lattice
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Short (geodesic) cycles?

• A cycle S is short (geodesic) if it is not the sum of two

shorter cycles.

• Set of short cycles ergodic? No, counterexample:
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Complete graphs

• Complete graph KN on N nodes has O(N3) chordless cycles

(triangles).

• Choose a vertex x. The set M of all triangles containing x

is an ergodic generating system of the cycles of KN .

• Resulting energy landscape with local minima
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Summary

• Introduced Monte Carlo method for obtaining statistics of

cycles in graphs.

• Remaining task: general ergodicity criterion for move sets.

• Move set involving all chordless cycles is ergodic and gener-

ates completely smooth energy landscape (no local minima).

• Smaller move sets known for some cases: complete graphs,

planar graphs. Smoothness of energy landscape is lost.
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...
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Robust cycle bases

Kainen (2000): A cycle basis B is robust if for every [simple]

cycle Z there is a linear ordering of the subset C(G,B, Z) such

that, as each element in the resulting sequence is added to

form the sum Z, it intersects the sum of those preceding

it in a nontrivial path. In this case, the partial sums must

be cycles. A cycle basis is called cyclically robust when the

sum of the new cycle and those that went before remains a cycle.

Relevance here:

basis (cyclically) robust ⇒ ergodic Monte Carlo
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Robust cycle bases — known results

• planar graphs: planar basis, basis cycles are outlines of faces

in a planar embedding

• complete graphs (Kainen): pick arbitrary vertex x, basis cy-

cles are all triangles containing x

• slightly more general: graphs spanned by a star (argument

analogous to complete graphs)

• No general criterion for existence of (cyclically) robust bases
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Monte Carlo — summing cycles

• Sum of two cycles yields new cycle:

+ =

+ =

• (generalized) cycle: subgraph, all degrees even

• simple cycle: connected subgraph, all degrees = 2.
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Monte Carlo — cycle space

(1,0,0,0) (1,0,0,1) (1,0,1,0) (1,0,1,1) (1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)

• cycle space: contains all (generalized) cycles

• finite-dimensional vector space, has cycle basis

Linear Algebra kicks butt!!!
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Connected transition graph
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Connected transition graph
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Disconnected transition graph
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Disconnected transition graph
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Application: protein-protein interactions

• H. pylori network from DIP, version April 24, 2005

• 710 proteins

• 1420 interactions
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PPI vs. random graphs
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Duplication-divergence model

=>

q

=>p
A’A A

1. duplication: generate new node A′ with same neighbors as randomly
chosen node A. Add edge AA′ with probability p.

2. divergence: For each pair of edges (AX, A′X), with probability q remove
one of the edges (chosen with prob. 1/2); resume at 1.

Vázquez et al. (2003)
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Application: growing graphs

n=3n=2n=1n=0
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c(n+1)(h) =
h

∑

l=3

( h

h − l

)

c(n)(l) for l ≥ 4, and

c(n+1)(3) = c(n)(3) + 3n
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Protein Interaction vs. random graphs
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H. pylori network from DIP, version April 24, 2005, 710 proteins, 1420 interactions
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