

A Constraint-Based Approach to Structure Prediction for Simplified Protein Models that Outperforms Other Existing Methods

Rolf Backofen and Sebastian Will Chair for Bioinformatics Friedrich-Schiller-Universität Jena new affiliation: Albert-Ludwigs-Universität Freiburg

Our Group/Research Interest

• protein folding in simplified models

- Sebastian Will
- recognition of regulatory sequences

• RNA-sequence-structure alignment

- Sven Siebert, Sebastian Will
- alternative splicing

- Michael Hiller

- Rainer Pudimat (JCB)
- selenoproteins: Anke Busch, Sven Siebert (DFG-Schwerpunkt "Selenoproteine")

computer scientist are interested in methods

- method: constraint-based structure prediction
 - lattice models
 - basic model of HP-type models
 - subproblems: bounds, hydropbic cores, threading

bioinformatics are interested in applications as well

- results and applications
 - degeneracy of sequences
 - finding protein-likes sequences with unique ground state
 - comparing different models (cubic/fcc, HP-model with HPNX)

computer scientist are interested in methods

- method: constraint-based structure prediction
 - lattice models
 - basic model of HP-type models
 - subproblems: bounds, hydropbic cores, threading

bioinformatics are interested in applications as well

- results and applications
 - degeneracy of sequences
 - finding protein-likes sequences with unique ground state
 - comparing different models (cubic/fcc, HP-model with HPNX)

Structure Prediction as Optimization Problem

- searched: structure (conformation) of minimal (free) energy
 - \Rightarrow huge search space
- hence: only parts of the search space considered \Rightarrow generate-and-test
 - generate approximation
 - here: broad exploration of search space
 - starting points for fine-tuning

often: low-resolution model = lattice model

Structure Prediction as Optimization Problem

- searched: structure (conformation) of minimal (free) energy
 - \Rightarrow huge search space
- hence: only parts of the search space considered \Rightarrow generate-and-test
 - generate approximation
 - here: broad exploration of search space
 - starting points for fine-tuning

often: low-resolution model = lattice model

Structure Prediction as Optimization Problem

- searched: structure (conformation) of minimal (free) energy
 - \Rightarrow huge search space
- hence: only parts of the search space considered \Rightarrow generate-and-test
 - generate approximation
 - here: broad exploration of search space
 - starting points for fine-tuning

often: low-resolution model = lattice model

B Previous Prediction Approaches for Latttice Models

- sometimes: heuristic approaches chain growth algorithms
 - genetic algorithms
 - advantages:* fastdisadvantages:* only for structure prediction
- mostly: monte-carlo/simulated annealing
 - advantages:* easy to adapt* if ergodic, then known distributiondisadvantages:* for HP-model, optimal solution nearly never found* most approaches are **not** ergodic
- also: complete enumeration
 - advantages: * direct exploration of landscapedisadvantages: * very short sequences, only 2D

Move Sets

• often: local moves

- fast, but not ergodic
- what can be said on landscape if not ergodic

• ergodic, but seldomly used (slow)

- trade-off: choose between
 - models, that closely resembles proteins structure
 BUT no hope of (algorithmically) finding the native structure
 - models, that crudely resembles proteins structure
 BUT we can find the native structure
 BUT SO FAR: we cannot find the native structure either
- here: BUT we can find the native structure using constraint programming

- trade-off: choose between
 - models, that closely resembles proteins structure
 BUT no hope of (algorithmically) finding the native structure
 - models, that crudely resembles proteins structure
 BUT we can find the native structure
 BUT SO FAR: we cannot find the native structure either
- here: BUT we can find the native structure using constraint programming

- trade-off: choose between
 - models, that closely resembles proteins structure
 BUT no hope of (algorithmically) finding the native structure
 - models, that crudely resembles proteins structure
 BUT we can find the native structure
 BUT SO FAR: we cannot find the native structure either
- here: BUT we can find the native structure using constraint programming

- trade-off: choose between
 - models, that closely resembles proteins structure
 BUT no hope of (algorithmically) finding the native structure
 - models, that crudely resembles proteins structure
 BUT we can find the native structure
 BUT SO FAR: we cannot find the native structure either
- here: BUT we can find the native structure using constraint programming

- trade-off: choose between
 - models, that closely resembles proteins structure
 BUT no hope of (algorithmically) finding the native structure
 - models, that crudely resembles proteins structure
 BUT we can find the native structure
 BUT SO FAR: we cannot find the native structure either
- here: BUT we can find the native structure using constraint programming

- trade-off: choose between
 - models, that closely resembles proteins structure
 BUT no hope of (algorithmically) finding the native structure
 - models, that crudely resembles proteins structure
 BUT we can find the native structure
 BUT SO FAR: we cannot find the native structure either
- here: BUT we can find the native structure using constraint programming

Lattice Models

- lattice models:
 - usually only backbone
 - positions = positions on lattice
 - self-avoiding: no steric conflicts

• often used lattices:

face-centered-cubic

- **BUT:** search for native conformation = NP-complete
- which lattice should be used?

- Kepler's conjecture: FCC=densest packing of balls proved just recently (after ≈ 400 years)
- [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

 the neighbours are not distributed in a uniform, less dense way, but rather in a clustered
 dense way, occupying positions that closely approximate those of a distorted FCC packing....

- Kepler's conjecture: FCC=densest packing of balls proved just recently (after ≈ 400 years)
- [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

 the neighbours are not distributed in a uniform, less dense way, but rather in a clustered
 dense way, occupying positions that closely approximate those of a distorted FCC packing....

- Kepler's conjecture: FCC=densest packing of balls proved just recently (after ≈ 400 years)
- [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

 the neighbours are not distributed in a uniform, less dense way, but rather in a clustered
 dense way, occupying positions that closely approximate those of a distorted FCC packing....

- Kepler's conjecture: FCC=densest packing of balls proved just recently (after ≈ 400 years)
- [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

 the neighbours are not distributed in a uniform, less dense way, but rather in a clustered
 dense way, occupying positions that closely approximate those of a distorted FCC packing....

- Kepler's conjecture: FCC=densest packing of balls proved just recently (after ≈ 400 years)
- [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

 the neighbours are not distributed in a uniform, less dense way, but rather in a clustered
 dense way, occupying positions that closely approximate those of a distorted FCC packing....

- in the following: search for conformation with densest hydrophobic packing = max. number of contacts between hydrophobic AA (green)
 - HP-model of Ken Dill: folding of sequences consisting of H and P

- in the following: search for conformation with densest hydrophobic packing = max. number of contacts between hydrophobic AA (green)
 - HP-model of Ken Dill: folding of sequences consisting of H and P

- in the following: search for conformation with densest hydrophobic packing = max. number of contacts between hydrophobic AA (green)
 - HP-model of Ken Dill: folding of sequences consisting of H and P

- in the following: search for conformation with densest hydrophobic packing = max. number of contacts between hydrophobic AA (green)
 - HP-model of Ken Dill: folding of sequences consisting of H and P

- in the following: search for conformation with densest hydrophobic packing = max. number of contacts between hydrophobic AA (green)
 - HP-model of Ken Dill: folding of sequences consisting of H and P

- Algorithm consist of three steps:
- Step 1 and 2 are precomputation steps
 - Step 1: compute lower energy bounds

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

- Algorithm consist of three steps:
- Step 1 and 2 are precomputation steps
 - Step 1: compute lower energy bounds

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

- Algorithm consist of three steps:
- Step 1 and 2 are precomputation steps
 - Step 1: compute lower energy bounds

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

- Algorithm consist of three steps:
- Step 1 and 2 are precomputation steps
 - Step 1: compute lower energy bounds

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

- Algorithm consist of three steps:
- Step 1 and 2 are precomputation steps
 - Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

 $\overrightarrow{\mathsf{Step}}$

- Algorithm consist of three steps:
- Step 1 and 2 are precomputation steps
 - Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

 $\overrightarrow{\mathsf{Step}}$

- constraint problem C_{\Pr} :
 - position of i-th amino acid: $X_i, Y_i, Z_i \in [1 \dots n]$
 - constraints describe Self-Avoiding Walks
 - $(X_i, Y_i, Z_i) \neq (X_j, Y_j, Z_j)$ and $|(X_i, Y_i, Z_i) (X_{i+1}, Y_{i+1}, Z_{i+1})| = 1$
- constraint-based optimization: distributing over aminoacid positions

- problems redundant constraints and search strategy [Backofen:98]
 - symmetry breaking [Backofen&Will:99]
 - bound for number of HH-contacts [Backofen:00a,03]
 - new constraints, propagation [Backofen:Will:01]

- constraint problem C_{\Pr} :
 - position of i-th amino acid: $X_i, Y_i, Z_i \in [1 \dots n]$
 - constraints describe Self-Avoiding Walks
 - $(X_i, Y_i, Z_i) \neq (X_j, Y_j, Z_j)$ and $|(X_i, Y_i, Z_i) (X_{i+1}, Y_{i+1}, Z_{i+1})| = 1$
- constraint-based optimization: distributing over aminoacid positions

- problems redundant constraints and search strategy [Backofen:98]
 - symmetry breaking [Backofen&Will:99]
 - bound for number of HH-contacts [Backofen:00a,03]
 - new constraints, propagation [Backofen:Will:01]

- constraint problem C_{\Pr} :
 - position of i-th amino acid: $X_i, Y_i, Z_i \in [1 \dots n]$
 - constraints describe Self-Avoiding Walks
 - $(X_i, Y_i, Z_i) \neq (X_j, Y_j, Z_j)$ and $|(X_i, Y_i, Z_i) (X_{i+1}, Y_{i+1}, Z_{i+1})| = 1$
- constraint-based optimization: distributing over aminoacid positions

- problems redundant constraints and search strategy [Backofen:98]
 - symmetry breaking [Backofen&Will:99]
 - bound for number of HH-contacts [Backofen:00a,03]
 - new constraints, propagation [Backofen:Will:01]

- constraint problem C_{\Pr} :
 - position of i-th amino acid: $X_i, Y_i, Z_i \in [1 \dots n]$
 - constraints describe Self-Avoiding Walks
 - $(X_i, Y_i, Z_i) \neq (X_j, Y_j, Z_j)$ and $|(X_i, Y_i, Z_i) (X_{i+1}, Y_{i+1}, Z_{i+1})| = 1$
- constraint-based optimization: distributing over aminoacid positions

- problems redundant constraints and search strategy [Backofen:98]
 - symmetry breaking [Backofen&Will:99]
 - bound for number of HH-contacts [Backofen:00a,03]
 - new constraints, propagation [Backofen:Will:01]

- constraint problem C_{\Pr} :
 - position of i-th amino acid: $X_i, Y_i, Z_i \in [1 \dots n]$
 - constraints describe Self-Avoiding Walks
 - $(X_i, Y_i, Z_i) \neq (X_j, Y_j, Z_j)$ and $|(X_i, Y_i, Z_i) (X_{i+1}, Y_{i+1}, Z_{i+1})| = 1$
- constraint-based optimization: distributing over aminoacid positions

- problems redundant constraints and search strategy [Backofen:98]
 - symmetry breaking [Backofen&Will:99]
 - bound for number of HH-contacts [Backofen:00a,03]
 - new constraints, propagation [Backofen:Will:01]

- constraint problem C_{\Pr} :
 - position of i-th amino acid: $X_i, Y_i, Z_i \in [1 \dots n]$
 - constraints describe Self-Avoiding Walks
 - $(X_i, Y_i, Z_i) \neq (X_j, Y_j, Z_j)$ and $|(X_i, Y_i, Z_i) (X_{i+1}, Y_{i+1}, Z_{i+1})| = 1$
- constraint-based optimization: distributing over aminoacid positions

- problems redundant constraints and search strategy [Backofen:98]
 - symmetry breaking [Backofen&Will:99]
 - bound for number of HH-contacts [Backofen:00a,03]
 - new constraints, propagation [Backofen:Will:01]

 search numbers S, E, N, D, M, O, R, Y different with

=

		S	Е	Ν	D
+		Μ	0	R	Е
=	Μ	0	Ν	Е	Y

• as a constraint problem:

 search numbers S, E, N, D, M, O, R, Y different with

=

		S	Е	Ν	D
+		Μ	0	R	Е
=	Μ	0	Ν	Е	Y

• as a constraint problem:

 search numbers S, E, N, D, M, O, R, Y different with

=

		S	Е	Ν	D
+		Μ	0	R	Е
=	Μ	0	Ν	Е	Y

• as a constraint problem:

 search numbers S, E, N, D, M, O, R, Y different with

=

		S	Е	Ν	D
+		Μ	0	R	Е
=	Μ	0	Ν	Е	Y

• as a constraint problem:

 search numbers S, E, N, D, M, O, R, Y different with

=

		S	Е	Ν	D
+		Μ	0	R	Е
=	Μ	0	Ν	Е	Y

• as a constraint problem:

 search numbers S, E, N, D, M, O, R, Y different with

=

		S	Е	Ν	D
+		Μ	0	R	Е
=	Μ	0	Ν	Е	Y

• as a constraint problem:

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

•	search numbers S, E, N, D, M, O, R, Y
	different with

=	Μ	0	Ν	Е	Y	
+		Μ	0	R	Е	
		S	Е	Ν	D	

- complete enumeration: $pprox 10^8$ combinations
- S + M ≥ 10*M
- S + [−]1 ≥ 10
- from all different

 \implies Constraint Propagierung:

- $\implies M = 1$ $\implies S = 9 \quad and \quad O = 0$
- \implies E, N, D, R, Y $\in \{2, \dots, 8\}$

Problem 1: Frame Sequences

Bounds for FCC

- FCC models proteins better: $\sim 1.5 2$ Å RMSD [Park&Levitt95]
- BUT: almost nothing was known
 - approximation: 60% of optimum [Agarwala et al.98]
 - only trivial bounds: 6 \times number of H-amino acids.
- approach:

layer contacts

interlayer contacts

Bounds for FCC

- FCC models proteins better: $\sim 1.5 2$ Å RMSD [Park&Levitt95]
- BUT: almost nothing was known
 - approximation: 60% of optimum [Agarwala et al.98]
 - only trivial bounds: 6 \times number of H-amino acids.
- approach:

layer contacts

interlayer contacts

Bounds for FCC

- FCC models proteins better: $\sim 1.5 2$ Å RMSD [Park&Levitt95]
- BUT: almost nothing was known
 - approximation: 60% of optimum [Agarwala et al.98]
 - only trivial bounds: 6 \times number of H-amino acids.
- approach:

layer contacts

interlayer contacts

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

$$a = \lceil \sqrt{n} \rceil \qquad b = \lceil \frac{n}{a} \rceil$$

Recursion for Bound

 $B_{C}(n, n_1, a_1, b_1)$: contacts in core with n elements and first layer $E_1: n_1, a_1, b_1$

 $= B_{\rm LC}(n_1, a_1, b_1)$

 $\mathrm{B}_{\mathrm{ILC}}(n_1,a_1,b_1,n_2,a_2,b_2)$ c

+ $B_C(n-n_1, n_2, a_2, b_2)$

contacts in layer E_1

contacts between layers E_1 and $E_2: n_2, a_2, b_2$ contacts in core with $n - n_1$ elements

and first layer E_2

+

Bound on Interlayer Contacts

 recall: we need an bound on interlayer contacts

• **but:** we are given only frames

 \Rightarrow bound number of 4-, 3-, 2- and 1-points, given frames

- needed: parameters, which determine the number of 4-, 3-, 2- and 1-points
- Lemma let ℓ be the number of 3-points. Then:

number of 4 = $n_i + 1 - a_i - b_i$ number of 2 = $2a_i + 2b_i - 2\ell - 4$ number of 1 = $\ell + 4$.

- needed: parameters, which determine the number of 4-, 3-, 2- and 1-points
- Lemma let ℓ be the number of 3-points. Then:

number of 4 = $n_i + 1 - a_i - b_i$ number of 2 = $2a_i + 2b_i - 2\ell - 4$ number of 1 = $\ell + 4$.

- needed: parameters, which determine the number of 4-, 3-, 2- and 1-points
- Lemma let ℓ be the number of 3-points. Then:

number of 4 = $n_i + 1 - a_i - b_i$ number of 2 = $2a_i + 2b_i - 2\ell - 4$ number of 1 = $\ell + 4$.

- needed: parameters, which determine the number of 4-, 3-, 2- and 1-points
- Lemma let ℓ be the number of 3-points. Then:

number of 4 = $n_i + 1 - a_i - b_i$ number of 2 = $2a_i + 2b_i - 2\ell - 4$ number of 1 = $\ell + 4$.

- needed: parameters, which determine the number of 4-, 3-, 2- and 1-points
- Lemma let ℓ be the number of 3-points. Then:

number of 4 = $n_i + 1 - a_i - b_i$ number of 2 = $2a_i + 2b_i - 2\ell - 4$ number of 1 = $\ell + 4$.

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

- observation: ℓ can also be calculated from the frame

bound:

- calculate max. number of diagonals
- optimal placement: balance
- numbers between edges

Problem 2: Enumerate Hydrophobic Cores

- constraint variables:
 - boolean variable for every position

- contact variable for each neighboring position
- constraints: $\sum_{\vec{p} \in \text{frames}} \mathbf{pnt}(\vec{p}) = \text{number of Hs}$
 - if optimal, then no caveats

 $\hat{=}$

 $\hat{=}$

 $\hat{=}$

 \bigcirc

 $(\mathbf{pnt}(\vec{p}) = 1)$

 $(\mathbf{pnt}(\vec{p}) \text{ undef.})$

 $\mathbf{con}(\vec{p}, \vec{q}) = 1$

 $\hat{=}$ (**pnt**(\vec{p}) = 0)

- remaining problem: relative positions of frames
- subproblems:
 - symmetries later

- many subproblems solved several times
 - * do not use fixed frame position
 - * global bind frame positions by surrounding cube
- more pruning: optimal core must have optimal frame-sequence in any direction
 constructive disjunction

- remaining problem: relative positions of frames
- subproblems:
 - symmetries later

- many subproblems solved several times
 - * do not use fixed frame position
 - * global bind frame positions by surrounding cube
- more pruning: optimal core must have optimal frame-sequence in any direction
 constructive disjunction

- remaining problem: relative positions of frames
- subproblems:
 - symmetries later

- many subproblems solved several times
 - * do not use fixed frame position
 - * global bind frame positions by surrounding cube
- more pruning: optimal core must have optimal frame-sequence in any direction
 constructive disjunction

- remaining problem: relative positions of frames
- subproblems:
 - symmetries later

- many subproblems solved several times
 - * do not use fixed frame position
 - * global bind frame positions by surrounding cube
- more pruning: optimal core must have optimal frame-sequence in any direction
 constructive disjunction

- remaining problem: relative positions of frames
- subproblems:
 - symmetries later

- many subproblems solved several times
 - * do not use fixed frame position
 - * global bind frame positions by surrounding cube
- more pruning: optimal core must have optimal frame-sequence in any direction
 constructive disjunction

- remaining problem: relative positions of frames
- subproblems:
 - symmetries later

- many subproblems solved several times
 - * do not use fixed frame position
 - * global bind frame positions by surrounding cube
- more pruning: optimal core must have optimal frame-sequence in any direction
 constructive disjunction

Problem 3: Threading Sequence onto Hydrophobic Cores

- threading: given core, find a sequence of monomer through it
- main problem: self-avoiding walks \Rightarrow new constraint: SAWalk (x_1, \ldots, x_m)

- problem: complete handling for $\texttt{SAWalk}(x_1,\ldots,x_m)$ is hard
- therefore: approximate SAWalks \Rightarrow k-avoiding walks

- threading: given core, find a sequence of monomer through it
- main problem: self-avoiding walks \Rightarrow new constraint: SAWalk (x_1, \ldots, x_m)

- problem: complete handling for $\texttt{SAWalk}(x_1,\ldots,x_m)$ is hard
- therefore: approximate SAWalks \Rightarrow k-avoiding walks

- threading: given core, find a sequence of monomer through it
- main problem: self-avoiding walks \Rightarrow new constraint: SAWalk (x_1, \ldots, x_m)

- problem: complete handling for $\texttt{SAWalk}(x_1,\ldots,x_m)$ is hard
- therefore: approximate SAWalks \Rightarrow k-avoiding walks

- threading: given core, find a sequence of monomer through it
- main problem: self-avoiding walks \Rightarrow new constraint: SAWalk (x_1, \ldots, x_m)

- problem: complete handling for $\texttt{SAWalk}(x_1,\ldots,x_m)$ is hard
- therefore: approximate SAWalks \Rightarrow k-avoiding walks

- threading: given core, find a sequence of monomer through it
- main problem: self-avoiding walks \Rightarrow new constraint: SAWalk (x_1, \ldots, x_m)

- problem: complete handling for $\texttt{SAWalk}(x_1,\ldots,x_m)$ is hard
- therefore: approximate SAWalks \Rightarrow k-avoiding walks

- psinglets: HPH-subsequence
- in cubic lattice: has strong influence on core

- caveat-freeness by path constraint
- remaining invalid case **excluded by 3-avoidingness**

- psinglets: HPH-subsequence
- in cubic lattice: has strong influence on core

- caveat-freeness by path constraint
- remaining invalid case **excluded by 3-avoidingness**

- psinglets: HPH-subsequence
- in cubic lattice: has strong influence on core

- caveat-freeness by path constraint
- remaining invalid case **excluded by 3-avoidingness**

- psinglets: HPH-subsequence
- in cubic lattice: has strong influence on core

- caveat-freeness by path constraint
- remaining invalid case **excluded by 3-avoidingness**

- psinglets: HPH-subsequence
- in cubic lattice: has strong influence on core

- caveat-freeness by path constraint
- remaining invalid case **excluded by 3-avoidingness**

Problem 4: Symmetry Breaking

solved, but skipped here!

authors	model	dim.	maxlen	algorithm	comment
[Yue& Dill PhysRevE93]	cubic HP	3	36	branch-and-bound	optimality proven
[Yue&Dill PNAS95]	cubic HP	3	88	branch-and-bound	optimality proven
[Sazhin et al. 01]	cubic HP, FCC	3	34	branch-and-bound	not always optimal
[Cui et al. PNAS02]	square HP	2	18	compl. enum	
[Hart&Istrail JCB97]	FCC side chain	3		approximation	86% of optimum
[Agarwala et al. JMB97]	FCC HP	3		approximation	$\frac{3}{5}$ of optimum

- our results:
 - native conformation up to length 300
 - proof of optimality
 - number of conformations of length n: $\approx 4.5^n$

threading on 100-Hs core			
seq.	length	runtime	
S1	135	9 s	
S2	151	15 s	
S3	161	18 s	
S4	164	11 s	

- \Rightarrow search space handled $\approx 4.5^{190}$ bigger
- only existing non-heuristic algorithm for FCC

authors	model	dim.	maxlen	algorithm	comment
[Yue& Dill PhysRevE93]	cubic HP	3	36	branch-and-bound	optimality proven
[Yue&Dill PNAS95]	cubic HP	3	88	branch-and-bound	optimality proven
[Sazhin et al. 01]	cubic HP, FCC	3	34	branch-and-bound	not always optimal
[Cui et al. PNAS02]	square HP	2	18	compl. enum	
[Hart&Istrail JCB97]	FCC side chain	3		approximation	86% of optimum
[Agarwala et al. JMB97]	FCC HP	3		approximation	$\frac{3}{5}$ of optimum

- our results:
 - native conformation up to length 300
 - proof of optimality
 - number of conformations of length n: $\approx 4.5^n$

threading on 100-Hs core			
seq.	length	runtime	
S1	135	9 s	
S2	151	15 s	
S3	161	18 s	
S4	164	11 s	

- \Rightarrow search space handled $\approx 4.5^{190}$ bigger
- only existing non-heuristic algorithm for FCC

authors	model	dim.	maxlen	algorithm	comment
[Yue& Dill PhysRevE93]	cubic HP	3	36	branch-and-bound	optimality proven
[Yue&Dill PNAS95]	cubic HP	3	88	branch-and-bound	optimality proven
[Sazhin et al. 01]	cubic HP, FCC	3	34	branch-and-bound	not always optimal
[Cui et al. PNAS02]	square HP	2	18	compl. enum	
[Hart&Istrail JCB97]	FCC side chain	3		approximation	86% of optimum
[Agarwala et al. JMB97]	FCC HP	3		approximation	$\frac{3}{5}$ of optimum

- our results:
 - native conformation up to length 300
 - proof of optimality
 - number of conformations of length n: $\approx 4.5^n$

threading on 100-Hs core			
seq.	length	runtime	
S1	135	9 s	
S2	151	15 s	
S3	161	18 s	
S4	164	11 s	

- \Rightarrow search space handled $\approx 4.5^{190}$ bigger
- only existing non-heuristic algorithm for FCC

authors	model	dim.	maxlen	algorithm	comment
[Yue& Dill PhysRevE93]	cubic HP	3	36	branch-and-bound	optimality proven
[Yue&Dill PNAS95]	cubic HP	3	88	branch-and-bound	optimality proven
[Sazhin et al. 01]	cubic HP, FCC	3	34	branch-and-bound	not always optimal
[Cui et al. PNAS02]	square HP	2	18	compl. enum	
[Hart&Istrail JCB97]	FCC side chain	3		approximation	86% of optimum
[Agarwala et al. JMB97]	FCC HP	3		approximation	$\frac{3}{5}$ of optimum

- our results:
 - native conformation up to length 300
 - proof of optimality
 - number of conformations of length n: $\approx 4.5^n$

threading on 100-Hs core			
seq.	length	runtime	
S1	135	9 s	
S2	151	15 s	
S3	161	18 s	
S4	164	11 s	

- \Rightarrow search space handled $\approx 4.5^{190}$ bigger
- only existing non-heuristic algorithm for FCC

Runtimes

prediction of one optimal structure

(sequence length 48, "Harvard sequences" from [Yue et al., 1995])

Nr.	sequence	CPSP	PERM
1	$HPH_2P_2H_4PH_3P_2H_2P_2HPH_3PHPH_2P_2H_2P_3HP_8H_2$	0,1 s	6,9 min
2	$H_4PH_2PH_5P_2HP_2H_2P_2HP_6HP_2HP_3HP_2H_2P_2H_3PH$	0,1 s	40,5 min
3	$PHPH_2PH_6P_2HPHP_2HPH_2PHPHP_3HP_2H_2P_2H_2P_2HPHP_2$	4,5 s	100,2 min
4	$P_2HP_3HPH_4P_2H_4PH_2PH_3P_2HPHPHP_2HP_6H_2PH_2PH_2PH_2PH_3P_2HPHPHPHP_2HP_6H_2PH_2PH_2PH_3P_2HPHPHPHPP_2HP_6H_2PH_2PH_2PH_3P_2HPHPHPHPP_2HP_6H_2PH_2PH_2PH_3P_2HPHPHPHPP_2HP_6H_2PH_2PH_2PH_3P_2HPH_2PH_2PH_2PH_2PH_3P_2HPHPHPPPPP_2HPP_6H_2PH_2PH_3P_3P_3P_3HPH_2PH_2PH_2PH_3P_3P_3H_3H_3P_3H_3P_3H_3H_3P_3H_3P_3H_3P_3H_3P_3H_3$	1,8 s	74,7 min
5	$H_3P_3H_2PHPH_2PH_2PH_2PHP_7HPHP_2HP_3HP_2H_6PH$	1,7 s	59,2 min
6	$PHP_4HPH_3PHPH_4PH_2PH_2P_3HPHP_3H_3P_2H_2P_2H_2P_3H_3P_2H_2P_2H_2P_3H_3P_2H_2P_2H_2P_3H_3P_2H_2P_3H_3P_2H_2P_2H_2P_3H_3P_2H_3P_2H_2P_3H_3P_2H_2P_3H_3P_3H_3P_2H_2P_3H_3P_3H_3P_2H_3P_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3P_3H_3P_3H_3P_3P_3H_3P_3H_3P_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3P_3H_3H_3P_3H_3P_3H$	12,1 s	144,7 min
7	$PHPH_2P_2HPH_3P_2H_2P_2P_3H_5P_2HPH_2PHPHP_4HP_2HPHP$	7,3 s	284,0 min
8	$PH_2PH_3PH_4P_2H_3P_6HPH_2P_2H_2PHP_3H_2PHPHPHP_2P_3$	1,5 s	26,6 min
9	$PHPHP_4HPHPHP_2HPH_6P_2H_3PHP_2HPH_2P_2HPH_3P_4H$	0,3 s	1420,0 min
10	$PH_2P_6H_2P_3H_3PHP_2HPH_2P_2HP_2HP_2H_2P_2H_7P_2H_2$	0,1 s	18,3 min

- CPSP: "our approach", constraint-based
- PERM [Bastolla et al., 1998]: stochastic optimization

PERM=pruned-enriched Rosenbluth method

Applications

• structure prediction

• investigation of landscape properties

- degeneracy of sequences
- finding protein-likes sequences with unique ground state
- comparing different models (cubic/fcc, HP-model with HPNX)

Degeneracy

- degeneracy (g) of a sequence = number of structures with lowest energy
- known: HP-model has high degeneracy
- unknow: how high is it?
 - are there sequences with g=1 (unique ground state, "protein-like")?
 - how does it compare to other models (FCC, HPNX)?
 - how do neutral nets look like?
- degeneracy: can only be tested via two algothms

Sequence	degeneracy	/ found by
	CHCC [Yue et al]	our approach
НРННРРНННРРННРРНРРНРННРРННРРННРРРНРРРРРР	$\geq 1,500,000$	10,677,113
ННННРННРННННРРНРРНРРРРРРРРРРРРРРРРРРРРР	$\geq 14,000$	28,180
РНРННРНННННРРНРРРРНРНРРНРРРНРРННРРННРРНРРНР	$\geq 5,000$	5,090
РННРРРРРРННРРРНННРНРРНРРНРРНРРННРРНННННН	$\geq 188,000$	580,751

Degeneracy

- degeneracy (g) of a sequence = number of structures with lowest energy
- known: HP-model has high degeneracy
- unknow: how high is it?
 - are there sequences with g=1 (unique ground state, "protein-like")?
 - how does it compare to other models (FCC, HPNX)?
 - how do neutral nets look like?
- degeneracy: can only be tested via two algothms

Sequence	degeneracy	/ found by
	CHCC [Yue et al]	our approach
НРННРРНННРРННРРНРРНРННРРННРРННРРРНРРРРРР	$\geq 1,500,000$	10,677,113
ННННРННРННННРРНРРНРРРРРРРРРРРРРРРРРРРРР	$\geq 14,000$	28,180
РНРННРНННННРРНРРРРНРНРРНРРРНРРННРРННРРНРРНР	$\geq 5,000$	5,090
РННРРРРРРННРРРНННРНРРНРРНРРНРРННРРНННННН	$\geq 188,000$	580,751

Application: Design of protein-like Sequences

- find sequences with *exactly* one optimal structure
- stochastic local search

- at every step: calculation/estimation of degeneracy (using our CPFL)
- but: runtime depends on degeneracy
- good news: runtime grows only linearly with degeneracy

Example: Sequences with Unique Ground-State

- length 64:

• length 80:

• Note: previously it was assumed that HP-model has none g=1 sequences

Three "Typical" Runs

Degeneracy: FCC vs. Cubic

• log-degeneracy cubic HP-model:

• log-degeneracy FCC HP-model:

- HPNX: P=positive N=negative X=neutral
- should reduce the degeneracy
- How much? \Rightarrow preliminary results
 - HP: approx. 0.016% of all random sequences are uniquely folding.
 - HPNX: approx. 2.6% of all random sequences are uniquely folding.
- Note: 50% H monomers
- example for reduction: sequence S2
 - HPNX: HXNNHHHHXHXHHNXNHXHHNHPPXHP
 - corresp. HP: HPPPHHHHPHPHPPHPHPHPPPHP

\textbf{S}_2 HP-sequence: 4 out of 297

\mathbf{S}_2 HPNX-sequence: the 4 native ones

Connectivity of Neutral Nets

WWW-Page

Bioinformatics

Protein Structure Prediction In The FCC-HP-model

РРРНРРРНННРРННРРРРРННННРНРРННРНРНРНННННРННРРРНРРРННРНННРРНРРН HP-Sequence

Reset Fold It Random

Sequence

The submitted sequence has a length of **67**. The number of Hs in this sequence is **32**, which consequently is the size of the hydrophobic cores. Due to its number of Hs, any structure for this sequence has at most **115** HH-Contacts.

Optimally compact Cores

Core 1 [PDB] The single core with 115 contacts. Cores are precomputed.

Optimal Structures

Conclusion

- constraint-based approach to protein folding
- guaranteed to find optima
- models: HP-like models: HP, HPNX
 - lattices: cubic, FCC
- applications: properties of landscape
 - degeneracy
 - neutral nets
 - folding tunnel

Acknowledgment

- Sebastian Will
- Erich Bornberg-Bauer
- Peter Stadler
- Michael Wolfinger