
A Constraint-Based Approach to Structure Prediction for

Simplified Protein Models that Outperforms Other

Existing Methods

Rolf Backofen and Sebastian Will

Chair for Bioinformatics

Friedrich-Schiller-Universität Jena

new affiliation: Albert-Ludwigs-Universität Freiburg

1

Our Group/Research Interest

• protein folding in simplified models

– Sebastian Will

• recognition of regulatory sequences

– Rainer Pudimat (JCB)

• selenoproteins: Anke Busch, Sven Siebert (DFG-Schwerpunkt “Selenoproteine”)

• RNA-sequence-structure alignment

j’
ji

i’

C

U G
C

C G

C G

C G

C G

G
A

U

– Sven Siebert, Sebastian Will

• alternative splicing

Exon 1 Exon 2 Exon 4

homolog

Exon 1 Exon 2 Exon 3 Exon 4genome

spliceform

alignment

– Michael Hiller

2

Overview

computer scientist are interested in methods

• method: constraint-based structure prediction

– lattice models

– basic model of HP-type models

– subproblems: bounds, hydropbic cores, threading

bioinformatics are interested in applications as well

• results and applications

– degeneracy of sequences

– finding protein-likes sequences with unique ground state

– comparing different models (cubic/fcc, HP-model with HPNX)

3

Overview

computer scientist are interested in methods

• method: constraint-based structure prediction

– lattice models

– basic model of HP-type models

– subproblems: bounds, hydropbic cores, threading

bioinformatics are interested in applications as well

• results and applications

– degeneracy of sequences

– finding protein-likes sequences with unique ground state

– comparing different models (cubic/fcc, HP-model with HPNX)

3

Structure Prediction as Optimization Problem

• searched: structure (conformation) of minimal (free) energy

⇒ huge search space

• hence: only parts of the search space considered⇒ generate-and-test

– generate approximation

– here: broad exploration of search space

– starting points for fine-tuning

• hierarchical approaches

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low

resolution model

improvement:

biolog. knowledge,

molecular dynamics

• often: low-resolution model = lattice model

4

Structure Prediction as Optimization Problem

• searched: structure (conformation) of minimal (free) energy

⇒ huge search space

• hence: only parts of the search space considered⇒ generate-and-test

– generate approximation

– here: broad exploration of search space

– starting points for fine-tuning

• hierarchical approaches

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low

resolution model

improvement:

biolog. knowledge,

molecular dynamics

• often: low-resolution model = lattice model

4

Structure Prediction as Optimization Problem

• searched: structure (conformation) of minimal (free) energy

⇒ huge search space

• hence: only parts of the search space considered⇒ generate-and-test

– generate approximation

– here: broad exploration of search space

– starting points for fine-tuning

• hierarchical approaches

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low

resolution model

improvement:

biolog. knowledge,

molecular dynamics

• often: low-resolution model = lattice model

4

Previous Prediction Approaches for Latttice Models

• sometimes: heuristic approaches – chain growth algorithms

– genetic algorithms

– . . .

advantages: ∗ fast

disadvantages: ∗ only for structure prediction

• mostly: monte-carlo/simulated annealing

advantages: ∗ easy to adapt

∗ if ergodic, then known distribution

disadvantages: ∗ for HP-model, optimal solution nearly never found

∗ most approaches are not ergodic

• also: complete enumeration

advantages: ∗ direct exploration of landscape

disadvantages: ∗ very short sequences, only 2D

5

Monte-Carlo with Simulated Annealing

current = random conf.

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Initial Conf.

while (t < Bound)

new = local-move(current)

∆E = #con(new) - #con(current)

if (not self-avoiding(new)) then

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������ �

�
�

�
�
�

�
�
�
�������

�
�
�
�����������

�
�
�
�

�
�
�

�
�
�

do nothing

elseif (∆E ≥ 0) then
�
�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������

������������������

�
�
�

�
�
�

�
�
�

�
�
�

current = new

elseif (Rand ≤ e
∆E
kBT) then

����������������
��
��
��

��
��
��

��
��
��
��

����������
�����
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

��������

�
�
�
�

��������

�
�
�

�
�
�

current = new

endif

end

6

Monte-Carlo with Simulated Annealing

current = random conf.

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Initial Conf.

while (t < Bound)

new = local-move(current)

∆E = #con(new) - #con(current)

if (not self-avoiding(new)) then

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������ �

�
�

�
�
�

�
�
�
�������

�
�
�
�����������

�
�
�
�

�
�
�

�
�
�

do nothing

elseif (∆E ≥ 0) then
�
�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������

������������������

�
�
�

�
�
�

�
�
�

�
�
�

current = new

elseif (Rand ≤ e
∆E
kBT) then

����������������
��
��
��

��
��
��

��
��
��
��

����������
�����
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

��������

�
�
�
�

��������

�
�
�

�
�
�

current = new

endif

end

6

Monte-Carlo with Simulated Annealing

current = random conf.

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Initial Conf.

while (t < Bound)

new = local-move(current)

∆E = #con(new) - #con(current)

if (not self-avoiding(new)) then

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������ �

�
�

�
�
�

�
�
�
�������

�
�
�
�����������

�
�
�
�

�
�
�

�
�
�

do nothing

elseif (∆E ≥ 0) then
�
�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������

������������������

�
�
�

�
�
�

�
�
�

�
�
�

current = new

elseif (Rand ≤ e
∆E
kBT) then

����������������
��
��
��

��
��
��

��
��
��
��

����������
�����
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

��������

�
�
�
�

��������

�
�
�

�
�
�

current = new

endif

end

6

Monte-Carlo with Simulated Annealing

current = random conf.

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Initial Conf.

while (t < Bound)

new = local-move(current)

∆E = #con(new) - #con(current)

if (not self-avoiding(new)) then

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������ �

�
�

�
�
�

�
�
�
�������

�
�
�
�����������

�
�
�
�

�
�
�

�
�
�

do nothing

elseif (∆E ≥ 0) then
�
�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������

������������������

�
�
�

�
�
�

�
�
�

�
�
�

current = new

elseif (Rand ≤ e
∆E
kBT) then

����������������
��
��
��

��
��
��

��
��
��
��

����������
�����
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

��������

�
�
�
�

��������

�
�
�

�
�
�

current = new

endif

end

6

Monte-Carlo with Simulated Annealing

current = random conf.

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Initial Conf.

while (t < Bound)

new = local-move(current)

∆E = #con(new) - #con(current)

if (not self-avoiding(new)) then

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������ �

�
�

�
�
�

�
�
�
�������

�
�
�
�����������

�
�
�
�

�
�
�

�
�
�

do nothing

elseif (∆E ≥ 0) then
�
�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������

������������������

�
�
�

�
�
�

�
�
�

�
�
�

current = new

elseif (Rand ≤ e
∆E
kBT) then

����������������
��
��
��

��
��
��

��
��
��
��

����������
�����
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

��������

�
�
�
�

��������

�
�
�

�
�
�

current = new

endif

end

6

Monte-Carlo with Simulated Annealing

current = random conf.

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Initial Conf.

while (t < Bound)

new = local-move(current)

∆E = #con(new) - #con(current)

if (not self-avoiding(new)) then

����������������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������
������ �

�
�

�
�
�

�
�
�
�������

�
�
�
�����������

�
�
�
�

�
�
�

�
�
�

do nothing

elseif (∆E ≥ 0) then
�
�
�
�

�
�
�

�
�
�

��������
������

��������

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������

������������������

�
�
�

�
�
�

�
�
�

�
�
�

current = new

elseif (Rand ≤ e
∆E
kBT) then

����������������
��
��
��

��
��
��

��
��
��
��

����������
�����
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

��������

�
�
�
�

��������

�
�
�

�
�
�

current = new

endif

end

6

Move Sets

• often: local moves

– fast, but not ergodic

– what can be said on landscape if not ergodic

• ergodic, but seldomly used (slow)
����������

�
�
�

�
�
�

�
�
�

�
�
�

����������

�
�
�

�
�
�

�����������
�
�

�
�
�
��������

�
�
�
�

�
�
�

�
�
�

����������

�
�
�
�

�������� ����������

�
�
�
�����������

�
�
�

�
�
�

���������
�
�

�
�
�

����������

�
�
�

�
�
�

�
�
�

�
�
�

7

Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming

8

Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming

8

Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming

8

Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming

8

Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming

8

Idea of Lattice Models

• trade-off: choose between

– models, that closely resembles proteins structure

BUT no hope of ever(algorithmically) finding the native structure

– models, that crudely resembles proteins structure

BUT we can find the native structure

BUT SO FAR: we cannot find the native structure either

• here: BUT we can find the native structure

using constraint programming

8

Lattice Models

• lattice models:

– usually only backbone

– positions = positions on lattice

– self-avoiding: no steric conflicts

• often used lattices:

cubic face-centered-cubic

• BUT: search for native conformation = NP-complete

• which lattice should be used?

9

The FCC

• FCC = face-centered cubic lattice

• Kepler’s conjecture: FCC=densest packing of balls

proved just recently (after≈ 400 years)

• [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

. . . the neighbours are not distributed in a uniform, less dense way, but rather in a clustered

dense way, occupying positions that closely approximate those of a distorted FCC packing.. . .

. . . We confirm that lattices with large combination numbers provide better

fits to protein structures . . .

10

The FCC

• FCC = face-centered cubic lattice

• Kepler’s conjecture: FCC=densest packing of balls

proved just recently (after≈ 400 years)

• [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

. . . the neighbours are not distributed in a uniform, less dense way, but rather in a clustered

dense way, occupying positions that closely approximate those of a distorted FCC packing.. . .

. . . We confirm that lattices with large combination numbers provide better

fits to protein structures . . .

10

The FCC

• FCC = face-centered cubic lattice

• Kepler’s conjecture: FCC=densest packing of balls

proved just recently (after≈ 400 years)

• [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

. . . the neighbours are not distributed in a uniform, less dense way, but rather in a clustered

dense way, occupying positions that closely approximate those of a distorted FCC packing.. . .

. . . We confirm that lattices with large combination numbers provide better

fits to protein structures . . .

10

The FCC

• FCC = face-centered cubic lattice

• Kepler’s conjecture: FCC=densest packing of balls

proved just recently (after≈ 400 years)

• [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

. . . the neighbours are not distributed in a uniform, less dense way, but rather in a clustered

dense way, occupying positions that closely approximate those of a distorted FCC packing.. . .

. . . We confirm that lattices with large combination numbers provide better

fits to protein structures . . .

10

The FCC

• FCC = face-centered cubic lattice

• Kepler’s conjecture: FCC=densest packing of balls

proved just recently (after≈ 400 years)

• [Bagci,Jernigan,Bahar 2002]: clusters of near neighbours in proteins

. . . the neighbours are not distributed in a uniform, less dense way, but rather in a clustered

dense way, occupying positions that closely approximate those of a distorted FCC packing.. . .

. . . We confirm that lattices with large combination numbers provide better

fits to protein structures . . .

10

Relation to Proteins

hydrophob (H)

polar (P)

• how does it related

to proteins?

– hydrophobic and polar (hydrophilic) amino acids

– hydrophobic are densely packed

alphabet:
H = Hydrophobic

P = Polar (hydrophilic)

• in the following: – search for conformation with densest hydrophobic packing

= max. number of contacts between hydrophobic AA (green)

– HP-model of Ken Dill: folding of sequences consisting of H and P

11

Relation to Proteins

hydrophob (H)

polar (P)

• how does it related

to proteins?

– hydrophobic and polar (hydrophilic) amino acids

– hydrophobic are densely packed

alphabet:
H = Hydrophobic

P = Polar (hydrophilic)

• in the following: – search for conformation with densest hydrophobic packing

= max. number of contacts between hydrophobic AA (green)

– HP-model of Ken Dill: folding of sequences consisting of H and P

11

Relation to Proteins

hydrophob (H)

polar (P)

• how does it related

to proteins?

– hydrophobic and polar (hydrophilic) amino acids

– hydrophobic are densely packed

alphabet:
H = Hydrophobic

P = Polar (hydrophilic)

• in the following: – search for conformation with densest hydrophobic packing

= max. number of contacts between hydrophobic AA (green)

– HP-model of Ken Dill: folding of sequences consisting of H and P

11

Relation to Proteins

hydrophob (H)

polar (P)

• how does it related

to proteins?

– hydrophobic and polar (hydrophilic) amino acids

– hydrophobic are densely packed

alphabet:
H = Hydrophobic

P = Polar (hydrophilic)

• in the following: – search for conformation with densest hydrophobic packing

= max. number of contacts between hydrophobic AA (green)

– HP-model of Ken Dill: folding of sequences consisting of H and P

11

Relation to Proteins

hydrophob (H)

polar (P)

• how does it related

to proteins?

– hydrophobic and polar (hydrophilic) amino acids

– hydrophobic are densely packed

alphabet:
H = Hydrophobic

P = Polar (hydrophilic)

• in the following: – search for conformation with densest hydrophobic packing

= max. number of contacts between hydrophobic AA (green)

– HP-model of Ken Dill: folding of sequences consisting of H and P

11

General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

⇒
Step 1

n =6 n =8 n =4n =21 2 43n =6 n =8 n =4n =21 2 43

⇒
Step 2

⇒
Step 3

12

General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

⇒
Step 1

n =6 n =8 n =4n =21 2 43n =6 n =8 n =4n =21 2 43

⇒
Step 2

⇒
Step 3

12

General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

⇒
Step 1

n =6 n =8 n =4n =21 2 43n =6 n =8 n =4n =21 2 43

⇒
Step 2

⇒
Step 3

12

General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

⇒
Step 1

n =6 n =8 n =4n =21 2 43n =6 n =8 n =4n =21 2 43

⇒
Step 2

⇒
Step 3

12

General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

⇒
Step 1

n =6 n =8 n =4n =21 2 43n =6 n =8 n =4n =21 2 43

⇒
Step 2

⇒
Step 3

12

General Approach

• Algorithm consist of three steps:

• Step 1 and 2 are precomputation steps

Step 1: compute lower energy bounds

estimate contacts (within layers, between layers)

Step 2: construct hydrophobic cores

use bounds from last step, precomputed

Step 3: thread sequence to hydrophobic cores of size n.

⇒
Step 1

n =6 n =8 n =4n =21 2 43n =6 n =8 n =4n =21 2 43

⇒
Step 2

⇒
Step 3

12

Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization : distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13

Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization : distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13

Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization : distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13

Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization : distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13

Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization : distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13

Constraint-based Formulation

• constraint problem CPr:

– position of i-th amino acid: Xi,Yi,Zi ∈ [1 . . . n]

– constraints describe Self-Avoiding Walks

(Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) and |(Xi,Yi,Zi)− (Xi+1,Yi+1,Zi+1)| = 1

• constraint-based optimization : distributing over aminoacid positions

CPr & X1 = 2

. . .
. . .

CPr

X1 = 2 X1 6= 2

X4 = 3

• problems – redundant constraints and search strategy [Backofen:98]

– symmetry breaking [Backofen&Will:99]

– bound for number of HH-contacts [Backofen:00a,03]bound for number of HH-contacts [Backofen:00a,03]

– new constraints, propagation [Backofen:Will:01]

13

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

S E N D

+ M O R E

= M O N E Y

• as a constraint problem: S,. . . , Y ∈ {0, . . . , 9}
S 6= 0, M 6= 0

S . . . Y all different

1000*S + 100*E + 10*N + 1*D

+ 1000*M + 100*O + 10*R + 1*E

= 10000*M + 1000*O + 100*N + 10*E + 1*Y

14

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

S E N D

+ M O R E

= M O N E Y

• as a constraint problem: S,. . . , Y ∈ {0, . . . , 9}
S 6= 0, M 6= 0

S . . . Y all different

1000*S + 100*E + 10*N + 1*D

+ 1000*M + 100*O + 10*R + 1*E

= 10000*M + 1000*O + 100*N + 10*E + 1*Y

14

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

S E N D

+ M O R E

= M O N E Y

• as a constraint problem: S,. . . , Y ∈ {0, . . . , 9}
S 6= 0, M 6= 0

S . . . Y all different

1000*S + 100*E + 10*N + 1*D

+ 1000*M + 100*O + 10*R + 1*E

= 10000*M + 1000*O + 100*N + 10*E + 1*Y

14

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

S E N D

+ M O R E

= M O N E Y

• as a constraint problem: S,. . . , Y ∈ {0, . . . , 9}
S 6= 0, M 6= 0

S . . . Y all different

1000*S + 100*E + 10*N + 1*D

+ 1000*M + 100*O + 10*R + 1*E

= 10000*M + 1000*O + 100*N + 10*E + 1*Y

14

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

S E N D

+ M O R E

= M O N E Y

• as a constraint problem: S,. . . , Y ∈ {0, . . . , 9}
S 6= 0, M 6= 0

S . . . Y all different

1000*S + 100*E + 10*N + 1*D

+ 1000*M + 100*O + 10*R + 1*E

= 10000*M + 1000*O + 100*N + 10*E + 1*Y

14

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

S E N D

+ M O R E

= M O N E Y

• as a constraint problem: S,. . . , Y ∈ {0, . . . , 9}
S 6= 0, M 6= 0

S . . . Y all different

1000*S + 100*E + 10*N + 1*D

+ 1000*M + 100*O + 10*R + 1*E

= 10000*M + 1000*O + 100*N + 10*E + 1*Y

14

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

SEND + MORE = MONEY

• search numbers S, E, N, D, M, O, R, Y

different with

SS E N D

+ MM O R E

= MM OO N E Y

• complete enumeration: ≈ 108 combinations =⇒ Constraint Propagierung :

• S + M≥ 10*M =⇒ M = 1M = 1
• S + M1 ≥ 10 =⇒ S = 9 and O = 0
• from all different =⇒ E, N, D, R, Y ∈ {2, . . . , 8}

search only for the rest!!

15

Problem 1: Frame Sequences

16

Bounds for FCC

• FCC models proteins better: ∼ 1.5− 2Å RMSD [Park&Levitt95]

• BUT: almost nothing was known

– approximation: 60% of optimum [Agarwala et al.98]

– only trivial bounds: 6× number of H-amino acids.

• approach:

interlayer contacts

layer contacts

x=1 x=2 x=3

4-point

3-point

n2=5n1=1 n3=2

17

Bounds for FCC

• FCC models proteins better: ∼ 1.5− 2Å RMSD [Park&Levitt95]

• BUT: almost nothing was known

– approximation: 60% of optimum [Agarwala et al.98]

– only trivial bounds: 6× number of H-amino acids.

• approach:

interlayer contacts

layer contacts

x=1 x=2 x=3

4-point

3-point

n2=5n1=1 n3=2

17

Bounds for FCC

• FCC models proteins better: ∼ 1.5− 2Å RMSD [Park&Levitt95]

• BUT: almost nothing was known

– approximation: 60% of optimum [Agarwala et al.98]

– only trivial bounds: 6× number of H-amino acids.

• approach:

interlayer contacts

layer contacts

x=1 x=2 x=3

4-point

3-point

n2=5n1=1 n3=2

17

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Bound on Layer Contact

• relation between surface and contacts

4n = 2·H-contacts + H-surface

↑ ↑
number of
H-neighbours

contacts to Ps
or solution positions

• relation to frame H-surface = 2 · a+ 2 · b (a, b)= (height,width)

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
��������

��������

horizontal

surface

1

2

3

����������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�����������

vertical surface

1 2

• minimal surface for n Hs = minimal frame (a, b) around n point

a = d
√
ne b = dna e

18

Recursion for Bound

+ + n2

a2

b2

a1

b1

n1
n2

a2

a1
n1

b2

b1

=

2 3 4

B (n1,a1,b1)

B (n1,a1,b1,n2,a2,b2)ILC

1 2 3 4

B (n,n1,a1,b1)C

n2

C

LC

B (n n1,n2,a2,b2)

BC(n, n1, a1, b1): contacts in core with n elements and first layer E1 : n1, a1, b1

= BLC(n1, a1, b1) contacts in layer E1

+ BILC(n1, a1, b1, n2, a2, b2) contacts between layers E1 and E2 : n2, a2, b2

+ BC(n− n1, n2, a2, b2) contacts in core with n− n1 elements

and first layer E2

19

Bound on Interlayer Contacts

• recall : we need an bound

on interlayer contacts

x=2x=1
n1=5 n2=3

3−point

4−point

2−point

• but: we are given only frames

x=1
n1=5

x=2
n2=3

a1
=

3
b1

=2

b2
=2

a2
=

2

⇒ bound number of 4−, 3−, 2− and 1−points, given frames

20

Bound on Number of 4-, 3-, 2- and 1-Points

• problem: number of 4-, 3-, 2- and 1-points in x = i+ 1 depends on exact position

of Hs in x = i

ni = 8
ai = height

bi = width
4

3

4

3

4

4

• needed: parameters, which determine the number of 4-, 3-, 2- and 1-points

• Lemma let ` be the number of 3-points. Then:

number of 4 = ni + 1− ai − bi number of 2 = 2ai + 2bi − 2`− 4

number of 1 = `+ 4.

for `, there is an upper bound [Backofen00]

21

Bound on Number of 4-, 3-, 2- and 1-Points

• problem: number of 4-, 3-, 2- and 1-points in x = i+ 1 depends on exact position

of Hs in x = i

ni = 8
ai = height

bi = width
4

3

4

3

4

4

• needed: parameters, which determine the number of 4-, 3-, 2- and 1-points

• Lemma let ` be the number of 3-points. Then:

number of 4 = ni + 1− ai − bi number of 2 = 2ai + 2bi − 2`− 4

number of 1 = `+ 4.

for `, there is an upper bound [Backofen00]

21

Bound on Number of 4-, 3-, 2- and 1-Points

• problem: number of 4-, 3-, 2- and 1-points in x = i+ 1 depends on exact position

of Hs in x = i

ni = 8
ai = height

bi = width
4

3

4

3

4

4

• needed: parameters, which determine the number of 4-, 3-, 2- and 1-points

• Lemma let ` be the number of 3-points. Then:

number of 4 = ni + 1− ai − bi number of 2 = 2ai + 2bi − 2`− 4

number of 1 = `+ 4.

for `, there is an upper bound [Backofen00]

21

Bound on Number of 4-, 3-, 2- and 1-Points

• problem: number of 4-, 3-, 2- and 1-points in x = i+ 1 depends on exact position

of Hs in x = i

ni = 8
ai = height

bi = width
4

3

4

3

4

4

• needed: parameters, which determine the number of 4-, 3-, 2- and 1-points

• Lemma let ` be the number of 3-points. Then:

number of 4 = ni + 1− ai − bi number of 2 = 2ai + 2bi − 2`− 4

number of 1 = `+ 4.

for `, there is an upper bound [Backofen00]

21

Bound on Number of 4-, 3-, 2- and 1-Points

• problem: number of 4-, 3-, 2- and 1-points in x = i+ 1 depends on exact position

of Hs in x = i

ni = 8
ai = height

bi = width
4

3

4

3

4

4

• needed: parameters, which determine the number of 4-, 3-, 2- and 1-points

• Lemma let ` be the number of 3-points. Then:

number of 4 = ni + 1− ai − bi number of 2 = 2ai + 2bi − 2`− 4

number of 1 = `+ 4.

for `, there is an upper bound [Backofen00]

21

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Bounds on the Number ` of 3-Points

• 3-point: from the side from the top

3−point

=⇒
3−point

• observation: ` can also be calculated from the frame

3−point
(next laxer)

i1=1i2=3

i3=2 i4=2
bound:

– calculate max. number of diag-

onals

– optimal placement: balance

numbers between edges

22

Problem 2: Enumerate Hydrophobic Cores

=⇒

23

Enumerating Hydrophobic Cores

• constraint variables:

– boolean variable for every position =̂ (pnt(~p) = 1)
=̂ (pnt(~p) = 0)
=̂ (pnt(~p) undef.)

– contact variable for each neighboring position =̂ con(~p, ~q) = 1

• constraints: –
∑

~p∈frames pnt(~p) = number of Hs

– if optimal, then no caveats

– . . .

24

Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

25

Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

25

Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

25

Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

25

Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

25

Enumerating Hydrophobic Cores

• remaining problem: relative positions of frames

• subproblems:

– symmetries later

– many subproblems solved several times

∗ do not use fixed frame position

∗ global bind frame positions by surrounding cube

– more pruning: optimal core must have optimal frame-sequence in any direction

constructive disjunction

25

Problem 3: Threading Sequence onto Hydrophobic Cores

=⇒

26

New Constraints for Threading

• threading: given core, find a sequence of monomer through it

• main problem: self-avoiding walks⇒ new constraint: SAWalk(x1, . . . , xm)

walk self-avoiding walk (SAWalk)

Pos. used twice

• problem: complete handling for SAWalk(x1, . . . , xm) is hard

• therefore: approximate SAWalks⇒ k-avoiding walks

4- but not 5-avoiding

27

New Constraints for Threading

• threading: given core, find a sequence of monomer through it

• main problem: self-avoiding walks⇒ new constraint: SAWalk(x1, . . . , xm)

walk self-avoiding walk (SAWalk)

Pos. used twice

• problem: complete handling for SAWalk(x1, . . . , xm) is hard

• therefore: approximate SAWalks⇒ k-avoiding walks

4- but not 5-avoiding

27

New Constraints for Threading

• threading: given core, find a sequence of monomer through it

• main problem: self-avoiding walks⇒ new constraint: SAWalk(x1, . . . , xm)

walk self-avoiding walk (SAWalk)

Pos. used twice

• problem: complete handling for SAWalk(x1, . . . , xm) is hard

• therefore: approximate SAWalks⇒ k-avoiding walks

4- but not 5-avoiding

27

New Constraints for Threading

• threading: given core, find a sequence of monomer through it

• main problem: self-avoiding walks⇒ new constraint: SAWalk(x1, . . . , xm)

walk self-avoiding walk (SAWalk)

Pos. used twice

• problem: complete handling for SAWalk(x1, . . . , xm) is hard

• therefore: approximate SAWalks⇒ k-avoiding walks

4- but not 5-avoiding

27

New Constraints for Threading

• threading: given core, find a sequence of monomer through it

• main problem: self-avoiding walks⇒ new constraint: SAWalk(x1, . . . , xm)

walk self-avoiding walk (SAWalk)

Pos. used twice

• problem: complete handling for SAWalk(x1, . . . , xm) is hard

• therefore: approximate SAWalks⇒ k-avoiding walks

4- but not 5-avoiding

27

Example: 3-Avoiding

• psinglets: HPH-subsequence

• in cubic lattice: has strong influence on core

caveat

• caveat-freeness by path constraint

• remaining invalid case excluded by 3-avoidingness

28

Example: 3-Avoiding

• psinglets: HPH-subsequence

• in cubic lattice: has strong influence on core

caveat

• caveat-freeness by path constraint

• remaining invalid case excluded by 3-avoidingness

28

Example: 3-Avoiding

• psinglets: HPH-subsequence

• in cubic lattice: has strong influence on core

caveat

• caveat-freeness by path constraint

• remaining invalid case excluded by 3-avoidingness

28

Example: 3-Avoiding

• psinglets: HPH-subsequence

• in cubic lattice: has strong influence on core

caveat

• caveat-freeness by path constraint

• remaining invalid case excluded by 3-avoidingness

28

Example: 3-Avoiding

• psinglets: HPH-subsequence

• in cubic lattice: has strong influence on core

caveat

• caveat-freeness by path constraint

• remaining invalid case excluded by 3-avoidingness

28

Problem 4: Symmetry Breaking

�
�
�

�
�
�
��������

��������

�
�
�

�
�
�

�
�
�
�������
��������

�
�
�

�
�
�

�
�
�
�

�
�
�
�

X1 = 3

X1 = 1 X1 6= 1

solved, but skipped here!

29

Comparison of Results

• small selection of previous approaches:

authors model dim. maxlen algorithm comment

[Yue& Dill PhysRevE93] cubic HP 3 36 branch-and-bound optimality proven

[Yue&Dill PNAS95] cubic HP 3 88 branch-and-bound optimality proven

[Sazhin et al. 01] cubic HP, FCC 3 34 branch-and-bound not always optimal

[Cui et al. PNAS02] square HP 2 18 compl. enum

[Hart&Istrail JCB97] FCC side chain 3 — approximation 86% of optimum

[Agarwala et al. JMB97] FCC HP 3 — approximation 3
5

of optimum

• our results:

– native conformation up to length 200300

– proof of optimality

– number of conformations

of length n: ≈ 4.5n

⇒ search space handled ≈ 4.5904.5190 bigger

– only existing non-heuristic algorithm for FCC

threading on 100-Hs core

seq. length runtime

S1 135 9 s
S2 151 15 s
S3 161 18 s
S4 164 11 s

30

Comparison of Results

• small selection of previous approaches:

authors model dim. maxlen algorithm comment

[Yue& Dill PhysRevE93] cubic HP 3 36 branch-and-bound optimality proven

[Yue&Dill PNAS95] cubic HP 3 88 branch-and-bound optimality proven

[Sazhin et al. 01] cubic HP, FCC 3 34 branch-and-bound not always optimal

[Cui et al. PNAS02] square HP 2 18 compl. enum

[Hart&Istrail JCB97] FCC side chain 3 — approximation 86% of optimum

[Agarwala et al. JMB97] FCC HP 3 — approximation 3
5

of optimum

• our results:

– native conformation up to length 200300

– proof of optimality

– number of conformations

of length n: ≈ 4.5n

⇒ search space handled ≈ 4.5904.5190 bigger

– only existing non-heuristic algorithm for FCC

threading on 100-Hs core

seq. length runtime

S1 135 9 s
S2 151 15 s
S3 161 18 s
S4 164 11 s

30

Comparison of Results

• small selection of previous approaches:

authors model dim. maxlen algorithm comment

[Yue& Dill PhysRevE93] cubic HP 3 36 branch-and-bound optimality proven

[Yue&Dill PNAS95] cubic HP 3 88 branch-and-bound optimality proven

[Sazhin et al. 01] cubic HP, FCC 3 34 branch-and-bound not always optimal

[Cui et al. PNAS02] square HP 2 18 compl. enum

[Hart&Istrail JCB97] FCC side chain 3 — approximation 86% of optimum

[Agarwala et al. JMB97] FCC HP 3 — approximation 3
5

of optimum

• our results:

– native conformation up to length 200300

– proof of optimality

– number of conformations

of length n: ≈ 4.5n

⇒ search space handled ≈ 4.5904.5190 bigger

– only existing non-heuristic algorithm for FCC

threading on 100-Hs core

seq. length runtime

S1 135 9 s
S2 151 15 s
S3 161 18 s
S4 164 11 s

30

Comparison of Results

• small selection of previous approaches:

authors model dim. maxlen algorithm comment

[Yue& Dill PhysRevE93] cubic HP 3 36 branch-and-bound optimality proven

[Yue&Dill PNAS95] cubic HP 3 88 branch-and-bound optimality proven

[Sazhin et al. 01] cubic HP, FCC 3 34 branch-and-bound not always optimal

[Cui et al. PNAS02] square HP 2 18 compl. enum

[Hart&Istrail JCB97] FCC side chain 3 — approximation 86% of optimum

[Agarwala et al. JMB97] FCC HP 3 — approximation 3
5

of optimum

• our results:

– native conformation up to length 200300

– proof of optimality

– number of conformations

of length n: ≈ 4.5n

⇒ search space handled ≈ 4.5904.5190 bigger

– only existing non-heuristic algorithm for FCC

threading on 100-Hs core

seq. length runtime

S1 135 9 s
S2 151 15 s
S3 161 18 s
S4 164 11 s

30

Runtimes

prediction of one optimal structure
(sequence length 48, “Harvard sequences” from [Yue et al., 1995])

Nr. sequence CPSP PERM

1 HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 0,1 s 6,9 min

2 H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH 0,1 s 40,5 min

3 PHPH2PH6P2HPHP2HPH2PHPHP3HP2H2P2H2P2HPHP2HP 4,5 s 100,2 min

4 P2HP3HPH4P2H4PH2PH3P2HPHPHP2HP6H2PH2PH 1,8 s 74,7 min

5 H3P3H2PHPH2PH2PH2PHP7HPHP2HP3HP2H6PH 1,7 s 59,2 min

6 PHP4HPH3PHPH4PH2PH2P3HPHP3H3P2H2P2H2P3H 12,1 s 144,7 min

7 PHPH2P2HPH3P2H2PH2P3H5P2HPH2PHPHP4HP2HPHP 7,3 s 284,0 min

8 PH2PH3PH4P2H3P6HPH2P2H2PHP3H2PHPHPH2P3 1,5 s 26,6 min

9 PHPHP4HPHPHP2HPH6P2H3PHP2HPH2P2HPH3P4H 0,3 s 1420,0 min

10 PH2P6H2P3H3PHP2HPH2P2HP2HP2H2P2H7P2H2 0,1 s 18,3 min

• CPSP: “our approach”, constraint-based

• PERM [Bastolla et al., 1998]: stochastic optimization

PERM=pruned-enriched Rosenbluth method

31

Applications

• structure prediction

• investigation of landscape properties

– degeneracy of sequences

– finding protein-likes sequences with unique ground state

– comparing different models (cubic/fcc, HP-model with HPNX)

32

Degeneracy

• degeneracy (g) of a sequence = number of structures with lowest energy

• known: HP-model has high degeneracy

• unknow: – how high is it?

– are there sequences with g=1 (unique ground state, “protein-like”)?

– how does it compare to other models (FCC, HPNX)?

– how do neutral nets look like?

• degeneracy: can only be tested via two algothms

Sequence degeneracy found by

CHCC [Yue et al] our approach

HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH≥ 1, 500, 000 10, 677, 113
HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH≥ 14, 000 28, 180
PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP≥ 5, 000 5, 090
PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH≥ 188, 000 580, 751

33

Degeneracy

• degeneracy (g) of a sequence = number of structures with lowest energy

• known: HP-model has high degeneracy

• unknow: – how high is it?

– are there sequences with g=1 (unique ground state, “protein-like”)?

– how does it compare to other models (FCC, HPNX)?

– how do neutral nets look like?

• degeneracy: can only be tested via two algothms

Sequence degeneracy found by

CHCC [Yue et al] our approach

HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH≥ 1, 500, 000 10, 677, 113
HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH≥ 14, 000 28, 180
PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP≥ 5, 000 5, 090
PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH≥ 188, 000 580, 751

33

Application: Design of protein-like Sequences

• find sequences with exactly

one optimal structure

• stochastic local search

node:

accepted sequences

edges:

simulation step/mutation

Degeneracy

0 1000 2000 3000 4000

1
5

50
50

0

steps

g

0 1000 2000 3000 4000

0
20

0
60

0
10

00

steps

tim
e

Step
1

59

12

12 40

28

28

112

62

23

10

8

20 32

32

72

14

6

34

30

9

12

6

24

38

3

2

4

6

14

971

34

Run Time Requirements

• at every step: calculation/estimation of degeneracy (using our CPFL)

• but: runtime depends on degeneracy

• good news: runtime grows only linearly with degeneracy

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10

0
20

0
30

0
40

0
50

0

Degeneracy

Ti
m

e/
s

35

Example: Sequences with Unique Ground-State

• length 64:

• length 80:

• Note: previously it was assumed that HP-model has none g=1 sequences

36

Three “Typical” Runs

a)

0 100 200 300 400 500

1
5

10
50

10
0

50
0

10
00

b)

0 100 200 300 400 500 600

1
5

10
50

10
0

50
0

10
00

c)

0 500 1000 1500 2000

1
5

10
50

10
0

50
0

10
00

a)
1089

905

411

281

152

21

12

2

5

2

2

1

b)

1403

266

182

19

24

12

4 8

3

8

5

5

6

3

14

15

12

8

5

6

12

18

12

8

194

23

11

12

18

4

2

3

2

2

3 3

2

2

1

c)
1254

390

169

91

17

32

22

2

2 2

2

2

2

4

2

2

10

2

4

22

16

8

2 2

2

1

37

Degeneracy: FCC vs. Cubic

• log-degeneracy cubic HP-model:

• log-degeneracy FCC HP-model:

38

Degeneracy: HP-Model vs. HPNX-model

• HPNX: P=positive N=negative X=neutral

• should reduce the degeneracy

• How much?⇒ preliminary results

– HP: approx. 0.016% of all random sequences are uniquely folding.

– HPNX: approx. 2.6% of all random sequences are uniquely folding.

• Note: 50% H monomers

• example for reduction: sequence S2

– HPNX: HXNNHHHHXHXHHNXNHXHHNHPPXHP

– corresp. HP: HPPPHHHHPHPHHPPPHPHHPHPPPHP

39

S2 HP-sequence: 4 out of 297

40

S2 HPNX-sequence: the 4 native ones

41

Connectivity of Neutral Nets

S14

S3

S34

S31

S24
S35

S16

S28

S26

S2
S9

S32

S22

S12

S36S33

S4

S6

S15

S19

S11

S10

S25

S1

S17
S29

S30

S27

S8

S20

S7

S23

S13

S21

S5S18

42

WWW-Page

43

Conclusion

• constraint-based approach to protein folding

• guaranteed to find optima

• models: – HP-like models: HP, HPNX

– lattices: cubic, FCC

• applications: properties of landscape

– degeneracy

– neutral nets

– folding tunnel

44

Acknowledgment

• Sebastian Will

• Erich Bornberg-Bauer

• Peter Stadler

• Michael Wolfinger

45

