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Computational mechanics reveals nanosecond time correlations in molecular
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a b s t r a c t

Statistical complexity, a measure introduced in computational mechanics has been applied to MD simu-
lated liquid water and other molecular systems. It has been found that statistical complexity does not
converge in these systems but grows logarithmically without a limit. The coefficient of the growth has
been introduced as a new molecular parameter which is invariant for a given liquid system. Using this
new parameter extremely long time correlations in the system undetectable by traditional methods
are elucidated. The existence of hundreds of picosecond and even nanosecond long correlations in bulk
water has been demonstrated.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is commonly believed that time correlations in liquids under
normal conditions do not exceed several picoseconds. At suffi-
ciently large times the dynamics of molecules can be described
as ordinary diffusion, that is a purely stochastic process indistin-
guishable from noise. Indeed, the standard correlation function
(calculated both from experimental and simulated data) analysis
[1] shows that all velocity correlations in water vanish after
�0.2 ps for hydrogen and �0.7 ps for oxygen (Fig. 1).

Time correlations in atom coordinates are commonly quantified
using the diffusion coefficient D defined through the mean square
displacement of an atom hx2ðtÞi / tD, where x is an atom’s coordi-
nate. For long enough times, D is equal to unity and the time
changes of x are completely described as a random process that
is zero correlation process. For water, the times when the correla-
tions vanish and D becomes equal to unity are also of the order of
several picoseconds.

Recent analysis pushes this boundary towards tens of picosec-
onds [2]. The authors investigated the moments (higher than two)
of the displacement of atoms in MD simulated water and argon.
They have demonstrated that for these times the moments signifi-
cantly deviate from the behaviour predicted by the diffusion theory.
It is shown that the process can be described by the continuous
time random walk (in contrast to the simple random walk for nor-
mal diffusion) model [3] implying non-Markovian character of the
dynamics. However, at the times exceeding several tens of picosec-
onds the system produces a simple Markov chain.

In this Letter, we demonstrate the existence of dynamical time
correlations in liquids at the time scale of hundreds of picoseconds

and even nanoseconds. This is done by applying a special statistical
measure to the molecular signals, computational mechanics [4–6].

2. Molecular system

We have simulated bulk water (periodic boundary conditions)
consisting of 392 SPC (Simple Point Charge) [7] molecules using
the GROMACS molecular dynamics [8] package. The temperature
of the system was kept constant at 300 K using Berendsen [9] ther-
mostat. Various number of molecules, water models, thermostat
types and their parameters were investigated to check the consis-
tency of the results. A sufficient equilibration was performed be-
fore collecting data for analysis. The velocity of one of the
hydrogens was used as a signal for the analysis.

3. The method

3.1. Test on long time correlations

Before describing the details of the statistical measure that we
used in the analysis, let us outline a general and simple procedure
that can confirm the existence of dynamical correlations in a
molecular system at times s (we will refer to this procedure as
‘s-test’).

Suppose the molecular system at equilibrium generates a signal
of the total length T significantly longer than expected correlation
times s: T ¼ ns, where n� 1 (we will designate it as ‘original’ sig-
nal). Let the signal be, for concreteness, the coordinate of one of the
atoms of the system. A statistical measure applied to the signal
produces a value M (for example, the diffusion constant D). It is
important that the same value M is obtained for any realisation
of the trajectory of length T, that is it is independent of the initial
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condition. Imagine also an ensemble of n realisations of the same
system each starting from randomly chosen initial conditions. A
test signal can be constructed from the ensemble such that it con-
sists of s-long pieces of the signals one from each realisation and
the total length of the test signal equals to T (Fig. 2). The same sta-
tistical measure can now be calculated from this test signal and it
would result in a value M0 (D0 for our example).

Two situations are now possible. If the system does not exhibit
correlations at time s then the original and the test signals are sta-
tistically the same and M0 should be equal to M (D ¼ D0). This is be-
cause in the absence of correlations changing the molecular
positions and velocities from time t to time t þ s is equivalent to
randomly choosing new values of the coordinates and the veloci-
ties. On the other hand, any differences in the values of M and M0

indicate that the original and the test signals are statistically differ-
ent. Since the statistics on each piece separately are equal to each
other (they are independent of the initial conditions), the differ-
ences between M and M0 are the result of the changes introduced
by the random shifts of the coordinates and velocities after the
evolution of the system over the period s. In other words, statistical
correlations in the system at the time scale s are present. This test
is realisable in MD simulations since trajectories starting with
specified initial conditions can easily be generated.

3.2. Statistical complexity

The velocity autocorrelation function fvðsÞ � 1
T

PT
t vt � vtþs is a

two point, linear statistical measure. Computational mechanics
[4–6] is conceptually different because it operates on histories of
v. It analyses the histories (‘pasts’) f� � � vt�2vt�1vtg by grouping

them into classes, called ‘causal states’ �j , if the histories are fol-
lowed by the same future fvtþ1vtþ2 � � �g (probabilistically). Thus,
the dynamics of the system is described by the probabilistic tran-
sitions between the causal states. Importantly, the statistic gener-
ated this way is a unique minimal sufficient statistic. This means
that it is the most compact complete statistical description of the
data, and it is also unique. The collection of the causal states to-
gether with the transition probabilities between them is called
an ‘�-machine’. The rigorous definition of the �-machine and its
essential mathematical properties are provided in Appendix A.1.

The statistical complexity , Cl, is the informational measure of
the size of the �-machine and quantifies the amount of information
about the past of the system that is needed to predict its future
dynamics: Cl ¼ H½Pð�jÞ�, where H is the Shannon entropy of the dis-
tribution of a random variable X, H½PðXÞ� � �

P
XPðXÞlog2PðXÞ, and

Pð�jÞ is the causal state probability (see Appendix A.1). �-machines
can be reconstructed from observed data using the CSSR algorithm
described and implemented in [10].

Computational mechanics analyses symbolic dynamics. In
applying computational mechanics to molecular systems, a correct
procedure of converting continuous molecular signals into a dis-
crete symbolic sequences from a finite size alphabet has to be
developed. The procedure we used is described in Appendix A.2.

4. Results and discussion

We first investigated the behaviour of �-machine as a function
of the length of the molecular signal, that is the simulation time.
Much to our surprise, we have found that the causal states struc-
ture, the �-machine, never converges at least at the lengths T of fea-
sible MD simulations [11]. Instead, new causal states appear as
more data are added during the simulation. This means that the
system produces statistically different futures for the same pasts
at all times observed in the simulation. Consequently, the value
of statistical complexity grows with T. For water the dependence
has a clear logarithmic character after � 0:4 ns, Fig. 3 (the initial
high values of Cl are due to the effect of the lack of data at small
T when most of the sequences seen by the algorithm are unique
that results in a large number of spurious causal states).

Similar behaviour can be observed for, example, the mean
square displacement of atoms. It also diverges with time, that is
it goes to infinity at inifintely long times. The coefficient of the
divergence is the diffusion constant D. Similarly, we have intro-
duced the coefficient of the growth of statistical complexity, hQ

(Fig. 3): Cl ¼ aþ hQ log2T.
It should be stressed, that this behaviour is not an artefact of the

procedure of the analysis, but rather an intrinsic property of the
molecular dynamical system. We have conducted a large number

time

time

Fig. 2. Schematic representation of two molecular trajectories used in the test re-
vealing correlations at time s (s-test, see text). C represents the whole phase space
of the molecular system. The top trajectory generates the ‘original’ signal, the bo-
ttom one generates the ‘test’ signal.

Fig. 3. Statistical complexity for the hydrogen velocity signal of bulk water. The
original uninterrupted signal (red) and an ensemble consiting of 158 ps long parts
are shown. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 1. Velocity autocorrelation function for oxygen (red) and hydrogen atoms of
two water molecules calculated as time average over 2000 ps. The curves for the
atoms of the same type are practically indistinguishable. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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of test that provide evidences of the independence of the phenom-
enon on (i) the procedure of symbolisation including the alphabet
size and particular partitioning of the velocity space, (ii) the length
of the histories used in the reconstruction of the �-machine, (iii) the
tolerance with which the statistical equivalence of the histories is
established. Some of the test are summarised in Appendix A.3 and
the details are provided in [11].

We have also verified that the value of hQ does not depend on
the details of the model of the liquid such as the number of mole-
cules, water model types, parameters of the thermostat, etc. (see
[11] for details).

Finally, an independent test that proves the genuine character
of the phenomenon is as follows. If the original signal is random-
ised at every 0.15 ps (by randomly rotating the velocity v around
the origin) the phenomenon disappears. This is equivalent to
destroying the dynamics at every 0.15 ps while preserving the sta-
tistics on the signal (the autocorrelation function remains the
same). If the phenomenon was the result of the analysis procedure,
the randomised signal would have produced the same �-machine,
which was not the case. The details of this and other similar tests
are described in [11].

The phenomenon is observed not only in water but also in other
molecular systems. For example, for liquid argon hQ ¼ 0:32, while
for a cluster of three water molecules in vacuum hQ ¼ 0:90. There-
fore, hQ seems to depend on the nature of the molecular system,
that is on the system’s inter-particle interactions. hQ appears to
be an invariant statistical characteristic of the liquid, similar to
the diffusion coefficient. However, in contrast to the latter and
the majority of the statistical descriptors of liquids, hQ behaves
fundamentally different in the s-test described in Section 3.1.

We have composed the test signal from the pieces of 158 ps
long each and of the same total length as the original signal,
60 ns. While the autocorrelation function and the diffusion coeffi-
cient produce the same values for both signals, hQ has significantly
higher value for the composite signal (0.71 for the original signal
and 1.21 for the test one). This means that the data in the pieces
are statistically (in the statistical complexity sense) different be-
tween each other. We would like to stress again that each piece
is significantly longer than the correlation times quantified by
the traditional methods. Therefore, the test signal is indistinguish-
able from the original one from the point of view of the traditional
analysis. However, hidden correlations do exist in the signal and
can be discovered using the hQ measure.

Thus, computational mechanics detects correlations in the
molecular signals at the times of at least 158 ps. We have also
tested longer pieces. hQ remains higher than for the original signal
even though the difference is smaller. This is because for longer
pieces there are fewer statistically different parts of data and, con-
sequently, it is statistically closer to the original signal.

We have calculated the values of hQ for different signals gener-
ated by the system: the velocities of the oxygen and hydrogen
atoms and the instantaneous temperature in bulk water. The
resulting values are the same within numerical errors. This shows
that the phenomenon manifests itself in different degrees of free-
dom of the system and even in their combination (the tempera-
ture) [11]. Therefore, it is reasonable to assume that it reflects
the behaviour of the full dimensional trajectory rather than the
properties of individual signals produced by the system.

Because of very high dimensionality of the system the phase
space volume is extremely large. Even taking into account the fact
that not the whole volume is explored but only the energetically
allowed areas, the area accessible by the molecular trajectory is
still very large. Therefore, the molecular trajectory never returns
to itself, that is every time the trajectory crosses the phase space
box it almost certainly takes a new route. This also follows from
the chaotic nature of the system.

We interpret the phenomenon in its three parts separately: (i)
the phase space structure of the system at a fixed (but large) signal
length T; (ii) why Cl increases with T; and (iii) why hQ is higher for
the s-test signal.

(i) Different parts of the trajectory should be statistically close
to each other because they are grouped together into a small
number of causal states (the number of causal states is
� 400 for the longest trajectory of 60 ps that contains
approximately two million histories). This number is signif-
icantly smaller than it would have been in the case of com-
pletely independent histories. In the latter case every new
history would form a new causal state and the size of the
�-machine would be equal to the total number of histories
in the signal.
From the analysis of the histories in each causal state we
have found that the histories from one causal state are not
only close to each other statistically but also in absolute val-
ues. That is the values of the velocities at each point in the
histories are very close. In other words the �-machine reveals
that the trajectory covers the phase space very non-uni-
formly, some histories appear more often than others.
There are two possibilities that can lead to such grouping.
The trajectory can form compact clusters in the phase space,
that is it can fluctuate in small areas of the phase space.
Alternatively, the trajectory moves along ‘preferred routes’
in the phase space and the number of these routes is limited
such that the trajectory returns to the same route many
times during the simulation.
Apparently, if the first situation takes place, the values of the
degrees of freedom (the coordinates and the velocities)
should also form compact clusters. Whereas for the second
case the degrees of freedom could take any allowed values.
For our system, the latter is observed. The total simulation
time is long enough for every molecule to cross the entire
simulation box a few dozens of times. In other words, every
degree of freedom of the system changes its value in the
whole allowed range of possible values (the velocities oscil-
late from minimal to maximal values very quickly), that is
the allowed phase space area is spanned from boundary to
boundary.
Taking into account these considerations we suggest the fol-
lowing microscopic picture. The molecular trajectory moves
along a ‘network’ of allowed ‘channels’ in the phase space

Fig. 4. Schematic representation of the molecular phase space C and ‘network’
formed by the trajectories for each uninterrupted part of the trajectory (see text).
Upper two figures represent the networks for two individual parts while the lower
figure demonstrates the larger phase space area of the combined network for the
test signal phase space.
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(Fig. 4). The ‘width’ of the channels is relatively small and,
consequently, the explored phase space volume of the sys-
tem is also small, at least compared to the whole energeti-
cally allowed area of the phase space.
Importantly, it should be remembered that the values of the
velocities themselves cover the phase space uniformly
(which can be easily verified). It is when the histories of them
are considered, the non-uniformity of covering the phase
space becomes detectable.

(ii) As the length of the simulation T increases the causal states
split, that is previously similar histories become statistically
different. In other worlds, the histories are redistributed
towards more uniform covering of the phase space. From
this point of view hQ quantifies the rate with which the tra-
jectory explores the phase space, and the rate is much less
than it could have been in the absence of any preferable
routes in the phase space. The ‘network’ spreads out with
T but slower than in the case of the stochastic limit.

(iii) The ‘network’ picture explains why the s-test signal pro-
duces larger values of hQ . Since the relative volume of the
network is much smaller than the whole allowed area of
the phase space then initial conditions for the next piece
chosen randomly fall with high probability outside the net-
work of the current piece. In other words, for each piece in
the test signal there exists its own network. When many
networks are superimposed in one signal, the total area cov-
ered by the trajectory becomes larger than for the original
signal (Fig. 4). Therefore, the phase space is explored faster
which, in turn, results in a higher value of hQ .

5. Conclusions

Summarising, using statistical complexity, a measure on the
histories of molecular signal, a parameter hQ , is introduced. The
parameter appears to be an invariant statistical characteristic of
the liquid. It is fundamentally different from other commonly used
statistical characteristics such as autocorrelation function or diffu-
sion coefficient in that hQ reveals hidden correlations in liquids on
the time scale of hundreds of picoseconds and even nanoseconds,
an order of magnitude longer than commonly accepted.

We conjecture that hQ quantifies the rate with which the sys-
tem’s trajectory explores the phase space. In this way, it elucidates
the structure in the full-dimensional phase space that is not visible
to other methods. The structure appears to be a network in the
phase space that the trajectory preferably follows. The area cov-
ered by this network (and by the trajectory evolving on it) is much
smaller than the whole energetically allowed phase space area.

The network structure depends on the initial conditions. From
the molecular point of view it means that it does matter where
to start the trajectory. In the process of following the network
structure the trajectory is confined within the network that intro-
duces the very long time correlations. This is also a manifestation
of non-ergodicity in the molecular system for which it is least ex-
pected to be found.

From the practical point of view the presented results can be
important in cases where long lasting phenomena involving few
molecules are under consideration. An obvious example is protein
folding, where it becomes possible to experimentally analyse few
(if not a single one) molecules over the time scales of nanoseconds.
Other examples are from the field of various kinds of single molec-
ular experiments, including single molecular spectroscopy [12].
Here the experimentally measured value is exactly of the kind de-
scribed in this work: it is a signal generated by one unperturbed
molecular process rather than an ensemble averaged quantity.
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Appendix A

A.1. Computational mechanics

All past s�i and future sþi halves of bi-infinite symbolic se-
quences centred at times i are considered. Two pasts s�1 and s�2
are defined equivalent if the conditional distributions over their fu-
tures Pðsþjs�1 Þ and Pðsþjs�2 Þ are equal. A causal state �ðs�i Þ is a set of
all pasts equivalent to s�i : �i � �ðs�i Þ ¼ fk : PðsþjkÞ ¼ Pðsþjs�i Þg. At a
given moment the system is at one of the causal states, and moves
to the next one with the probability given by the transition matrix
Tij � Pð�jj�iÞ. The transition matrix determines the asymptotic cau-
sal state probabilities as its left eigenvector Pð�iÞT ¼ Pð�iÞ, where
P

iPð�iÞ ¼ 1. The collection of the causal states together with the
transition probabilities define an �-machine.

It is proven [13] that the �-machine is

– a sufficient statistic, that is it contains the complete statistical
information about the data;
– a minimal sufficient statistic, therefore the causal states cannot
be subdivided into smaller states;
– a unique minimal sufficient statistic, any other one simply re-
labels the same states.

A.2. Symbolisation

Without any loss of dynamical information, an n-dimensional
continuous trajectory of a dynamical system can be converted to
an ðn� 1Þ-dimensional map using the Poincare section. At the
locations where the trajectory pierces the Poincare section surface
the points of the map are generated, thus sampling the continuous
signal at discrete time moments. However, the dynamics of the
map is equivalent to the original signal only if the full-dimensional
phase space trajectory is considered. For molecular signals when
the 3-dimensional configuration (or velocity) trajectory of one
atom (or higher dimensional for a group of atoms) is analysed
the Poincare map is undefined. However, a similar approach can
be used to naturally sample the roughly periodic signal of molecu-
lar systems.

Fig. 5. The process of converting the continuous atomic velocity signal v into sy-
mbolic sequence. On the right the symbolisation with 2, 3, 4, and 5 symbols are
shown.
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To discretise the three-dimensional velocity trajectories of indi-
vidual atoms of the molecular system we used its intersections
with the xy plane. For hydrogen water atoms, for example, the
average time interval between the intersections was equal to
0.032 ps. Very conveniently it roughly corresponds to the first min-
imum on the autocorrelation function, obeying the general rule for
time sampling of signals. The resulting two-dimensional points
approximately uniformly cover the area and form a centrally-sym-
metric distribution of points, Fig. 5.

In order to convert the trajectory map into a sequence of sym-
bols from a finite alphabet, an appropriate partitioning of the con-
tinuous space is required. A natural choice for such partitioning is
the generating partition (GP) [14] that has the property of a one-to-
one correspondence between the continuous trajectory and the
generated symbolic sequence. That is, all information is retained
after the symbolisation.

Consider a dynamical system xiþ1 ¼ fðxiÞ; f : M ! M and a finite
collection of disjoint open sets fBkgK

k¼1, partition elements, such
that for their closures M ¼ [K

k¼1
�Bk. Given an initial condition x0,

the trajectory fxign
i¼�n defines a sequence of visited partition ele-

ments fBxi
gn

i¼�n or fsign
i¼�n, where si are symbols from the alphabet

that mark the elements where xi 2 Bi. For a generating partition the
intersection of all images and pre-images of these elements is, in
the limit n!1, a single point: \n

i¼�nfð�iÞðBxi
Þ.

This elegant mathematical construct has two disadvantages
when applied to realistic molecular signals. First, an algorithm
for calculating a GP in a general case is unknown. Second, it is
shown for simple tent maps [15] that the values of statistical com-
plexity for different GPs of the same system are different (a system
can have many GPs, not to confuse with the uniqueness of a sym-
bolic representation of a trajectory for a given GP).

Recently methods for finding approximations for GP are re-
ported. The method from [16] is shown to reproduce GP for known
systems and can treat multi-dimensional observed time-series
data. The results of the application of this method to our velocity
data using 2, 3, 4, and 5 partitions are shown in Fig. 5. For all cases
the resulting approximations to GP are centrally symmetric (prob-
ably, because of the central symmetry of the data points distribu-
tion). Thus, for our signals we used centrally symmetric partitions
in all subsequent calculations.

Summarising, in converting the three-dimensional molecular
trajectories into symbolic sequences we, first, built a two-dimen-

sional map by finding the intersections of the trajectory with the
xy-plane and, second, assigned a symbol to each point of the map
depending to what segment of the partition the point belongs
(Fig. 5).

A.3. Computational mechanics produces consistent results

Two parameters of the algorithm should be set in calculating Cl

of a signal of given length, the alphabet size K and the length l of
the histories s� used by the �-machine reconstruction algorithm
CSSR.

The dependence of Cl on both parameters is shown in Table 1.
The convergence with l is excellent, so that for l P 6 the algorithm
produces almost identical results. Reliable results for large alpha-
bet sizes K are more difficult to obtain because for higher K much
longer signals are required. This explains the somewhat increased
values of Cl for K ¼ 5 in Table 1.

Varying the position of the Poincare section plane along the z-
axes did not lead to any change in the results. The effect of various
partitionings of the continuous space has been checked by apply-
ing non-symmetric (same as symmetric but shifted along the x
and y axes) partitions. In all cases this resulted in lower values of
Cl. Any variants of centrally symmetric partitioning produced
identical results.

Finally, different values of the adjustable parameter of the CSSR
algorithm, the significance level for the v-squared test that quanti-
fies the statistical equivalence of the histories has been checked.
For the values of 0.001, 0.01, and 0.1 the same qualitative behav-
iour of Cl and the same value of hQ have been reproduced.
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Table 1
Statistical complexity Cl vs. the length of histories l (K ¼ 3) and the alphabet size K
(l ¼ 6) for bulk water hydrogen velocity 60 ns long signal

l Cl K Cl

2 3.17 2 5.22
3 4.75 3 7.95
4 6.11 4 8.23
5 7.31 5 8.68
6 7.95
7 8.15
8 8.21
9 8.29

10 8.37
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