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We investigate the sensitivity of a Markov model with states and transition probabilities obtained
from clustering a molecular dynamics trajectory. We have examined a 500 ns molecular dynamics
trajectory of the peptide valine-proline-alanine-leucine in explicit water. The sensitivity is quantified
by varying the boundaries of the clusters and investigating the resulting variation in transition
probabilities and the average transition time between states. In this way, we represent the effect of
clustering using different clustering algorithms. It is found that in terms of the investigated
quantities, the peptide dynamics described by the Markov model is sensitive to the clustering; in
particular, the average transition times are found to vary up to 46%. Moreover, inclusion of
nonphysical sparsely populated clusters can lead to serious errors of up to 814%. In the
investigation, the time step used in the transition matrix is determined by the minimum time scale
on which the system behaves approximately Markovian. This time step is found to be about 100 ps.
It is concluded that the description of peptide dynamics with transition matrices should be
performed with care, and that using standard clustering algorithms to obtain states and transition
probabilities may not always produce reliable results. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2838980�

I. INTRODUCTION

There are many methods which seek to simulate the
folding of a peptide or protein. They range from very coarse-
grained approaches like the HP model1 to models with
atomic detail like molecular dynamics.2 While the coarse-
grained method gives results which can be useful as guide-
lines when designing proteins, they do not describe exactly
how a specific protein folds. To do this, a model with the
detail of molecular dynamics is needed. However, for the
system sizes of interest, the computational task of perform-
ing a molecular dynamics simulation which shows protein
folding is unfeasible. Therefore, there have been develop-
ments of algorithms which modify standard molecular dy-
namics to allow for simulations of these larger systems.3–10

These methods range from modifying the potential energy
landscape of the protein, to simulating several replicas of the
same system at different temperatures, to constructing Mar-
kov models from a large number of molecular dynamics
simulations.

A method which combines several molecular dynamics
simulations by using clustering and a Markov model for the
state transitions has recently been proposed. Using this
method, it is possible to reconstruct the overall dynamics of
a peptide from thousands of individual simulations. This is
done by counting the number of transitions between the dif-
ferent states from all the simulations. The Markov model can

be described by a state vector � which holds probabilities for
the different configurations and a transition matrix T. Given
that the system has state vector �t at time t, the state vector at
time t+�t can be calculated as �t+�t=�t.

A source of error in this approach could be the clustering
of configurational states. In the present paper, we investigate
how the state transition probabilities and folding dynamics
vary with slightly different clustering. The total number of
clusters is kept constant and only the boundaries between
clusters are varied. This is done to try and mimic the effect of
different clustering algorithms. The investigation is carried
out on a small peptide, ensuring that possible transitions are
sufficiently sampled. To the best of our knowledge, there is
no systematic analysis of the sensitivity of the clustering to
the resulting dynamical characteristics. However, we have
found that the results are sensitive to the clustering. First, if
the clustering is done in dihedral space, that could lead to the
appearance of nonphysical sparsely populated states, result-
ing in a variation in average transition times of up to 814%.
This shows a likely effect of clustering incorrectly. Second,
if the clusters are defined correctly, the sensitivity of the
average transition times to the variation in the boundaries is
up to 46%. This shows the likely variation in results obtained
with a clustering algorithm that performs well.

Another source of error in the transition matrix approach
is whether the transitions between the states can be described
accurately with a Markov model. It is found that at short
time scales, the transitions do not have a Markovian behav-
ior; however, at longer time scales, they become Markovian.
This is in line with previous work reported in thea�Electronic mail: dn232@cam.ac.uk.
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literature.11,12 The problem is addressed by choosing a suffi-
ciently long time scale in the construction of the Markov
model.

II. METHODS

In this investigation, we analyze a molecular dynamics
trajectory. The simulation was performed using the software
package GROMACS 3.2.13 The system examined was the four
residue peptide valine-proline-alanine-leucine �VPAL� sol-
vated in 874 water molecules. The peptide is shown in Fig. 1.
The simulation box was 3.0�3.0�3.0 Å3. The force field
was 53a6.14–16 This is optimized for bimolecular systems
interacting with water. Periodic boundary conditions were
used. The temperature was kept at 300 K using the thermo-
stat of Berendsen et al.17 Atomic positions were recorded
every 0.5 ps. The integration algorithm was a Verlet type and
the integration step was 0.002 ps. The system was equili-
brated before it was sampled for 500 ns. This produced a
total of 106 data points.

In our investigation, we need to be able to vary the clus-
ters. Therefore, the clustering is done by choosing dihedral
angles as cutoff angles between the different regions. We
only use the two central pairs of dihedrals because the ter-
minal residues are too flexible and do not define the overall
structure of the molecule. The initial clustering is represented
by the solid lines in Fig. 2. The dotted lines represent the
interval in which the cutoff angles are varied. By varying
each angle, in turn, it is possible to investigate the transition
matrix as a function of different cutoff angles. Each angle is
varied �0.5 rad around the initial cutoff. By plotting the

variation in the transition matrix elements with the dihedral
angle cutoff positions, it is possible to inspect how sensitive
the transition matrix is to clustering. By the method given in
Sec. II A, it is also possible to calculate how the variation in
clustering affects the average transition time. The latter is a
clear physical measure which characterizes the folding routes
directly. It can also be used to describe the folding pathways
when there are multiple initial and final states.

To apply the Markov model transition matrix approach,
we need to find the time scale at which the systems behavior
is Markovian. The Markovian assumption is that �t+�t

=T�t�t, where T�t is the transition matrix constructed for a
time step of �t. For a transition matrix constructed at a time
step of n�t, we must have Tn�t=T�t

n , where n=1,2 ,3. . . . By
expanding each transition matrix in eigenvalues and eigen-
vectors, it can be shown that a necessary condition for the
Markovian assumption to be valid is that �n�t,i=��t,i

n , where
� denotes an eigenvalue and i runs over the number of ei-
genvalues. From this we find that �n�t,i

1/n has to be constant for
n=1,2 ,3. . . . This constant is the eigenvalue of a transition
matrix with a time step of �t, which does satisfy the Mar-
kovian assumption. Given an eigenvalue, it is possible to
calculate a decay time �e.g., the half-life� for the correspond-
ing eigenvector. Using the constant eigenvalue, we, there-
fore, get that the time �i=−�n�t / ln��n�t,i�� has to be constant
if the Markovian description is correct. To find the time scale
at which the system’s behavior is Markovian, we can, there-
fore, construct transition matrices for the time steps n�t, n
=1,2 ,3. . ., and calculate �i for each matrix. The time step at
which �i for all i become constants is the time step at which
the system’s behavior is Markovian.11

A. Calculating the average transition time

To calculate the average transition time of a Markov
model, we need to define initial and final states. Each of
these can either be one state or a set of states. Assuming that
we have a set of initial states I and a set of final states F, the
average transition time can be written as

tIF = �
n=1

�

nPIF�n� . �1�

Here PIF�n� is the probability for all paths of length n which
start in I and end on F. We assume that the Markov process
is described by a transition matrix T and that there is a total
of N states. The first problem in the calculation is to find an

expression for PIF�n�. By introducing T̃, L, o, and v, we
construct the following algorithm:

• Form the transition matrix T, remove the rows and col-

umns for all states in F to form a new matrix T̃. This
new matrix will have a dimension of �N−d�� �N−d�,
where d is the number of states in F.

• Form the matrix L, which is of dimension d� �N−d�
and holds the matrix elements of T that give the prob-
abilities for entering F from all other states.

• Form the row vector o, which is of dimension 1�d and
holds 1’s in all places.

FIG. 1. �Color� The valine-proline-alanine-leucine �VPAL� peptide. Carbon
atoms are light blue, oxygens are red, nitrogens are dark blue, and hydro-
gens are gray. The united atoms force field 53a6 was used.

FIG. 2. �Color� The Ramachandran plots for the proline �left� and alanine
�right� residues. The initial clustering is marked by solid lines, while the
boundaries for the variation in the clustering are marked by dotted lines. The
lines are placed at �1� −2.0 rad, �2� 0.5 rad, �3� −2.2 rad, �4� 0.5 rad, �5�
−0.3 rad, and �6� 2.5 rad. The areas marked A1, B1, A2, B2, and C2 corre-
spond to the conformations in Fig. 4.
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• Form the vector v of dimension �N−d��1. The ele-
ments of v must describe the initial distribution of states
in I. If each starting state is equally likely, then their
elements must be equal. For the states not in I, the
initial value in v must be zero. The total sum of all
elements in v must be 1.

Using the quantities given above, PIF�n� can be written

as oLT̃n−1v �an explanation is given in the Appendix�. Let us

assume that T̃ has eigenvectors ei with corresponding eigen-
values �i. We then expand v in this basis. This gives v
=�i�iei. The average transition time �Eq. �1�� can then be
written as

tIF = �
n=1

�

nPIF�n� = �
n=1

�

noLT̃n−1v

=�
n=1

�

noLT̃n−1�
i

�iei = �
n=1

�

�
i

noL�i�i
n−1ei �2�

=�
i
��

n=1

�

n�i
n−1��ioLei = �

i

�i

�1 − �i�2oLei.

III. RESULTS

In our investigation, we partition the configurational
space of the peptide in six different locations �Fig. 2�. In the

FIG. 3. The average RMSD for the molecular configurations from different
clusters compared to a representative conformation from cluster number 1.
The error bars indicate the standard deviation.

FIG. 4. �Color online� The average
conformations of the VPAL molecule
in the different states. Comparing to
the clusters in Fig. 2, the states corre-
spond to �1� A1A2, �2� B1A2, �3� A1C2

+B1C2, �4� A1B2, and �5� B1B2.

115107-3 Peptide conformational dynamics J. Chem. Phys. 128, 115107 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



plot for proline, we see that the two cutoff lines means that
there are two states. In the alanine plot, there are four cutoff
lines, which give three different states. This gives a total of
six different states for the peptide. However, because one of
the states found in this way is very sparsely populated, we
remove this state to form a total of five states. The average
conformations in these states can be seen in Fig. 4. To inves-
tigate if this clustering is correct, we have compared it to
clustering using root mean square deviation �RMSD�. This is
done by taking a representative configuration for each cluster
and calculating the RMSD of all the configurations in each
cluster. For cluster number 1, the result is shown in Fig. 3. It
can be seen that the RMSD is smallest for configurations

which are also in cluster number 1, and that this cluster is
well separated from the other clusters. Similar results are
obtained when using the other clusters. Therefore, clustering
using cutoff angles in dihedral space is comparable to clus-
tering using RMSD.

Using the states shown in Fig. 4 allows the calculation of
a transition matrix. This is done by simply counting the num-
ber of transitions between the states in the molecular dynam-
ics trajectory. This gives a frequency matrix which holds the
number of transitions. By normalizing the columns in this
matrix to unity, the transition matrix is obtained. To deter-
mine an appropriate time step to take when building the tran-
sition matrix, we need to find the time step at which the
system behaves in a Markovian manner. To to this, we follow
the procedure given in Sec. II. Transition matrices are con-
structed with varying time steps. For each matrix, the �i’s are
calculated for all i. The result of this can be seen in Fig. 5.
When the system’s behavior is Markovian, the �i’s should be
constant. From about 50 ps, it can be seen that the values
become approximately constant; however, we chose a time
step of 100 ps to make sure that our system’s behavior is
sufficiently Markovian.

In Eq. �3�, the transition matrix for the initial clustering
with a 100 ps time step is given. It can be seen that once in
a state, there is a high probability of staying there in the next
time step. From the transition probabilities, it is possible to
trace out the transition paths of the highest probabilities.
These paths will be the conformational routes that the pep-

FIG. 5. �Color online� The variations in the �i’s �see text�. Each curve
corresponds to an eigenvalue. The curve for the eigenvalue 1 is not shown as
this gives an infinite � value.

FIG. 6. The range of transition probabilities for the dif-
ferent matrix elements as the clustering is varied. k is
the matrix element index defined as k=5�i−1�+ j,
where i is the row number and j the column number.
The range of the variation has been magnified five
times for clarity.
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tide will most likely follow during transitions. It is what is
commonly know as the folding path. In Fig. 6, the variation
in transition probability between all pairs of states can be
seen for the six different variations in cutoff angles. For
some elements, these variations are substantial. However, the
variation of a single transition probability does not describe
what happens to the peptide as a whole. Therefore, to de-
scribe the sensitivity of the folding path of a peptide, it is
desirable to have a measure which describes how variations
in the probabilities affect the folding path. This is exactly
what is achieved by calculating the average transition time
between states:

T100 ps = �
0.8972 0.1006 0.0345 0.3502 0.0650

0.0407 0.7215 0.0055 0.0324 0.2129

0.0240 0.0136 0.9496 0.1289 0.0519

0.0295 0.0182 0.0091 0.3491 0.1475

0.0087 0.1461 0.0013 0.1394 0.5228
	 .

�3�

In Fig. 7, the variation in average transition time be-
tween all pairs of states can be seen for the six different
variations in cutoff angles. It is clear that the variation is
more significant compared to the variation of the transition
matrix elements. This is because the variation in average
transition time describes the variations in the folding path as

a whole and not just a single transition. Since a deviation in
cutoff angle from the initial cutoff angle will typically mean
that clusters are connected by more transitions, the average
folding time, between states, will generally tend to decrease.
This causes a typical bell shaped variation in the average
transition time as a function of the variation in cutoff angle.
For the VPAL peptide, we assume the unfolded state to be
state 1 and the folded state, where the terminal residues of
the peptide form a salt bridge, to be state 5. The average
transition times between these two states are shown in Fig. 8.
In Fig. 7, the average transition time between states is also
shown for a transition matrix constructed with a time step of
0.5 ps �red in the figure�. As can be seen from Fig. 5, this is
not a correct description of the system since it does not have
a Markovian behavior at this time scale. However, it is still
interesting to note that on this time scale, the average transi-
tion times seem to be more sensitive to the clustering than at
the longer time scale.

The transition probabilities for transitions directly be-
tween these two states are almost zero. This means that the
variation in average transition time is caused by the varia-
tions of the transition probabilities between the intermediate
states. The variation in average transition time between these
two states is about 46%, which is significant. In the case
where the sparsely populated state was included as a state on
its own, the variations in average transition time to and from

FIG. 7. �Color� The range of the aver-
age time required for transition be-
tween all pairs of states. k=5�i−1�+ j,
where i is the index of the initial state
and j the index of the final state. Plots
1–6 correspond to each of the bound-
ary variations. In red, the same is
shown for a model constructed with a
time step of 0.5 ps �non-Markovian�.
The numbering is the same as in Fig.
2.
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this state was up to 814%. Examples of these large variations
are shown in Fig. 9. It can be seen that the variation mostly
affected the average folding time between a few states. This
is because the main path for transitions between other states
does not include the scarcely populated state. For the VPAL
peptide, it can also be seen that t51 is generally larger than
t15, which means that the folded state is more stable than the
unfolded state.

For a larger peptide, the variation can be expected to be
smaller, because there are many more paths by which the
peptide can fold. However, assuming a given peptide has a
folding path which passes though a few key states, then the
average transition time could be very sensitive to the cluster-
ing of these states.

IV. CONCLUSIONS

When constructing Markov models from molecular dy-
namics simulations, care must be taken. First, it is important
that the Markov model is constructed with a sufficiently
large time step so that the dynamics of the system are as
close to Markovian as possible. In our investigation, we
found that the transitions’ behavior is sufficiently Markovian
at 100 ps time step. However, for the purpose of construction
of reliable models, we also found that this is not enough to
ensure an accurate description of the dynamics. In particular,
we have found that transition probabilities and, hence, aver-
age transition times are sensitive to the specific clustering.
By varying the boundaries between clusters, we found that
the variation in average transition time between representa-
tive initial and final states can reach 46%. When the transi-
tion matrix is constructed with a time step of 0.5 ps �i.e., a
non-Markovian time step�, this variation increases to 100%.
For a case where the initial clustering was miscalculated by
inclusion of the nonphysical sparsely populated states, we
found the variations in average transition times between

some of the states to be as much as 814%. The choice of
clustering is a difficult one. On the one hand, if one chooses
to use only clusters which are highly populated, the transi-
tion probabilities and average transition times will not be as
sensitive. However, this may also mean that important infor-
mation about the folding path is lost.
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APPENDIX: CALCULATION OF PIF„n…

To illustrate how PIF�n� is calculated, let us consider a
three-state system. Let the initial state be 1 and the final state
be 3. The transition matrix for the system is given as

T = �a11 a12 a13

a21 a22 a23

a31 a32 a33
	 .

First, we form the matrices T̄, L, o, and v:

T̃ = 
a11 a12

a21 a22
�, L = �a31 a32�, o = �1�, v = 
1

0
� .

For n=1, we get

P31�1� = oLT̃0v = a31.

Since P31�1� is the probability to go from state 1 to state 3 in
one step, there is only one possible path 1-3. The probability
for this is simply a31. For n=2, we get

P31�2� = oLT̃1v = a31a11 + a32a21.

There are two possible paths 1-1-3 and 1-2-3. The probabil-
ity for each of these is a31a11 and a32a21, respectively. The
sum of these, therefore, gives the total probability. For n=3,
we get

P31�3� = oLT̃2v = a31a11a11 + a31a12a21 + a32a21a11

+ a32a22a21.

In this case, there are four possible paths from state 1 to state
3. These are 1-1-1-3, 1-2-1-3, 1-1-2-3, and 1-2-2-3. P31�3� is
the sum of the probabilities for each of these paths.
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