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a b s t r a c t

Molecular transport in phase space is crucial for chemical reactions because it defines
how pre-reactive molecular configurations are found during the time evolution of the
system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the
assumption of the normal diffusion in the phase space for bulkwater at ambient conditions
by checking the equivalence of the transport to the random walk model. Contrary to
common expectations we have found that some statistical features of the transport in the
phase space differ from those of the normal diffusion models. This implies a non-random
character of the path search process by the reacting complexes in water solutions. Our
further numerical experiments show that a significant long period of non-stationarity in
the transition probabilities of the segments of molecular trajectories can account for the
observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in
the model non-stationarity constitute hundreds of nanoseconds, that is much longer time
scales compared to typical lifetime of known liquid water molecular structures (several
picoseconds).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Molecular transport in liquids can be considered from two seemingly different viewpoints. On the one hand, the familiar
diffusion, the mean squared displacement of atoms in Euclidean three dimensional space, describes how, on average, the
atoms move in the liquid. On the other, the high-dimensional phase space transport of the dynamical system trajectories
comprising all the coordinates and velocities of all the particles in the volume of interest can be analysed. It should be noted
that both approaches are closely related, since the Cartesian coordinates defining the three-dimensional volume in the first
case are the phase space coordinates as well. Therefore, the phenomenon of the first kind is just a projection of that of the
second. It is, however, unclear whether the properties of a low-dimensional projection carry over to higher dimensional
subspaces. Therefore, it appears interesting to look at the diffusion process in dimensions higher then three.
High-dimensional transport in molecular systems plays a crucial role in, for example, defining the rates of chemical

reactions. The usual three-dimensional motion describes how the reactingmolecules are brought to physical contact (Fig. 1,
left), while the high-dimensional transport defines the details of the mutual rearrangements of the reacting species and
their relative motion during the chemical reaction (Fig. 1, right). In other words, it characterises how the molecules explore
different conformations and reciprocal movements (through the inclusion of the atomistic velocities). These details are
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Fig. 1. Left: the spatial diffusion in three dimensional space of atom’s coordinates x, y, z defines how on average the atom moves from time t0 to
time t; right: the phase space transport in the multidimensional space of the coordinates and momenta (velocities) of all the atoms {x1, y1, x2, y2, . . .},
{vx1, v

y
1, v

x
2, v

y
2, . . .} takes into account the mutual arrangements of the molecules, their velocities and the process of the rearrangements of the molecular

complexes; a chemical reaction takes place when the phase space trajectory finds a small area R in the phase space that corresponds to a particular pre-
reacting arrangement of the atoms.

fundamentally important. For example, the analysis of the molecular arrangements and the angle of attack necessary for
the reaction leads to a special, commonly accepted class of molecular structures called ‘‘near attack conformers’’. These are
‘‘special substrate conformations in which the bond forming atoms are at the van der Waals distance and at the angle near
the one in the transition state’’ [1,2]. Near attack conformers can be investigated at the classical level of description, before
the beginning of the quantum mechanical process of the actual reaction. Nevertheless, they are shown to be the necessary
prerequisites for many reaction to happen (see, for example, Ref. [3]). Another example is the role of water in the process of
heme degradation by heme oxygenase, where a very special water cluster is necessary for the O–O cleavage and the O–Cmeso
bond formation to take place [4].
It is believed that three-dimensional diffusion in simple liquids such as common solvents or small molecules in solution

can be well approximated by a random Brownian motion, at least at the longer than few picosecond time scale relevant
for chemical reactivity. This is a postulate of one of the cornerstones of the reaction rates theories, the Kramers theory [5],
where the reaction is considered as a diffusion problem and the solvent influence is described as a white noise. This view
implies that the reactants find each other as well as the necessary arrangements and angles of attack by pure chance. If
this is experimentally and theoretically supported in the case of classical three-dimensional diffusion, this point of view is
apparently unable to describe the emergence of complicated structures and specific reciprocalmovements of reacting atoms
in chemical reactions. In the latter case the investigation of the high-dimensional phase space transport becomes promising,
since it allows studying in detail the whole sequence of molecular transformations leading to the pre-reactive complexes. It
should be noted in this respect that the total volume of the phase space is extremely large and in many cases it seems very
unlikely that the required (actually formed) unique configuration of molecules corresponding to a small area in the phase
space can be found through a simple random search, Fig. 1.
We are not aware of any detailed investigation of the high-dimensional phase space transport in molecular systems. This

is partly because of the substantial technical difficulties in calculating reliable statistics on variables with very large range of
values (it grows exponentially with the investigated subspace dimensionality of the phase space) and partly because of the
unjustified assumption that the phase space coordinates are Gaussian random variables beyond the correlation time and,
thus, do not possess any additional information compared to the usual two-point correlation function.
In this paper we analyse the statistical properties of the phase space transport for bulk water at room temperature.

Contrary to the three-dimensional space we find significant deviations from the purely random character of motion.
Unlike the standard diffusion model where the displacements of any atom are adequately represented by a Gaussian
random process, the studied molecular system exhibits preferable routes in the phase space implying the existence of more
probable molecular configurations and reciprocal motions defined by the mutual interactions between the particles. Most
surprisingly, we found that the transition probabilities defining these phase space routes as the probabilities of ‘‘futures’’
given specific ‘‘pasts’’ slowly change with time that can be attributed to substantial non-stationarity of the atomistic
trajectories. Moreover, we show that this behaviour of the trajectories in the phase space can be reproduced with a non-
stationary Markov chain-type model by augmenting it with periodic time modulation of the transition probabilities of the
period of 100 ps and longer.

2. Investigated system and molecular signal

We analyse the trajectories of MD simulated bulk water at room temperature (see Appendix A for the MD simulation
details) sampled at discrete time moments. To be specific, we analyse the motion of one of the hydrogen atoms (signals
from other atoms aswell as their combinations result in qualitatively the same conclusions, see later) of a randomly selected
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molecule in the ensemble of 392 water molecules. In the case of normal diffusion described by a standard random walk
model the displacement of the atom along any of the three coordinates is well approximated by a randomly distributed
Gaussian variable. To avoid the influence of short time correlations that have the pronounced influence on the statistical
properties of the analysed trajectories, we downsample the initially three-dimensional trajectory by introducing a two-
dimensional cross-section (see Appendix B) that approximately corresponds to sampling the data at a rate defined by the
first minimum of the autocorrelation function. It can be further shown that for studying the properties of trajectories in the
phase space, it appears convenient (and sufficient) to replace the continuous signal with symbols from an alphabet of few
values, for example, the binary alphabet {0, 1} or the three symbol alphabet that we used in our studies {0, 1, 2}, in other
words, introduce a partition.
Thus, we take the velocity of one of the hydrogens as the experimental trajectory in the three-dimensional space and

construct its symbolic representation [6,7] (coordinates and other molecular signals produce the same conclusions, see
later). In this way the time series of the velocities of an atom {. . . vi−3vi−2vi−1vi} is converted into a symbolic sequence
{. . . 0010}. Considering symbols instead of the coordinate values for the signal gives us an advantage of a simpler and more
robust analysis without essential loss in the statistical information content [8]. Moreover, by considering symbolic sub-
sequences of a finite length, we can reconstruct the high-dimensional dynamics of the water molecules ensemble similar
to the procedure based on the famous Takens embedding theorem that allows reconstructing the vector dynamics from a
scalar observable [9].
The algorithm of symbolisation is not a trivial procedure since it requires an approximation to the generating partition

of the phase space [10]. For this purpose it is important to perform a proper selection of an observable, i.e. a variable or a
function of variables that allows the efficient approximation procedure to be developed. With this in mind we followed the
work [8] and aimed at obtaining a symbolic sequence of a maximum Shannon entropy. For this we select the (uniformly
distributed) angle ϕxy between the components vx, vy as a variable of interest and sample it at a rate defined by the cross-
section condition vz = 0. Dividing the area of the angular variable ϕxy values into three equal segments provides an efficient
partitioning for the purpose of symbolisation with 3-symbol alphabet due to the uniformity of the probability distribution
of the variable ϕxy.
The obtained symbolic sequence can be used to study the transport in the phase space by analysing the symbolic sub-

sequences (or ‘‘histories’’) that start at times t − l and end at times t , with t covering the whole simulation period (up
to 1 µs) and l being the length of the sub-sequence. In this representation each sub-sequence (word) is an l dimensional
projection of the whole dimensional molecular phase space. Varying the word length l we investigate various projections
of the whole dimensional phase space trajectory. We have found that the results reported here are robust with respect to
various projections (velocities, coordinates, etc., and l ≈ 5–7 to 13–15) as well as symbolisation schemes (see Appendix D).
Wewould like to stress again that even thoughwe used low dimensional signals for initial symbolisation of the trajectory

(the most straightforward were three dimensional velocities or coordinates of individual atoms, but we also analysed
many-atom signals, like, for example, instantaneous temperature) the analysed l-symbol words correctly represent the
l-dimensional subspaces of the whole phase space corresponding to the molecular system. Two considerations support
this point. First, according to Takens embedding theorem, a trajectory of a high-dimensional dynamical system can be
reconstructed by applying the time delay procedure to a properly selected scalar observable [11]. Second, representing
the selected observable with only few symbols is not an unjustified oversimplification. This is because sequences of the
data points are considered, when the dynamics ‘‘cut out’’ a ‘‘tube’’ in the phase space that contains only a small fraction of
admissible trajectories, Fig. 2. The ‘‘cross section’’ area of the tube depends on the length of the sequences and in the limit of
infinitely long sequences converges to a single point (in the special case of a ‘‘generating’’ partition). We have found that for
our numerically simulated molecular signal, such as an atomistic velocity, the symbolic sub-sequences of length 7 or higher
produce a ‘‘tube’’ that provides essentially the same statistics on the sequences of 3 symbols as the original, continuous
valued sequences.

3. The test on randomness of the diffusion process

Any l-symbol word represents a point in the l-dimensional symbolic projection of the phase space. To investigate the
way the words diffuse in the phase space we calculate various statistical characteristics over the long symbol trajectories
generated by the system during its evolution in time. The same characteristics were calculated for an ensemble of artificial
random signals obtained by the methods known in the field of signal processing as ‘‘surrogate signal analysis’’ or ‘‘bootstrap
technique’’ [12]. The procedure of building a ‘‘surrogate’’ time series generates a signal indistinguishable from the original
signal in terms of common statistical characteristics, such as the correlation function, themean, and the variance, but random
by definition (that is it does not contain the dynamic correlations originating from the deterministic motion of atoms). The
comparison of the results for the original molecular signal with the random surrogate provides a definitive test on the
randomness of the dynamics.

4. Results of numerical analysis

The simplest statistic characterising the words (phase space points) is their occurrence rate in the long symbolic
trajectories corresponding to the whole analysed time series. An example of the occurrences for a typical water trajectory is
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Fig. 2. The process of converting the atomistic trajectory (two dimensional in this example) into a sequence of symbols from the alphabet {0, 1}; the
area marked ‘‘0’’ at time t0 is transformed by the dynamics at the next time step; all trajectories that pass through the dark shaded area at time t1 have
the symbolic representation 00; the corresponding area is transformed at the next time step t2 and the dark shaded area here represents all trajectories
encoded as 000; the area is non-increasing and for an infinitely long sequence shrinks into a single point (if the partition is a special ‘‘generating partition’’).

Fig. 3. The probabilities P(si) of 9-symbol words in the symbolic sequence obtained from the hydrogen velocities of a 1µs long molecular trajectory (left)
and the surrogate of the same length (right); the alphabet of 3 symbols {012} was used; words si are numbered arbitrarily.

shown in Fig. 3. For a random symbolic sequence, the occurrence probabilities should be uniform, i.e. constitute a uniform
distribution. This is indeed observed for the case of the surrogate signal, Fig. 3. However, the same statistic calculated from
the molecular signal shows significant non-uniformity in the corresponding distributions. There are several frequent words
that signify preferable routes in the phase space of the water dynamical system.
Amore elaborate statistic describes the conditional probabilities of the symbol following each sequence: P(vi+1|si), where

si ≡ {vi−l+1 · · · vi−1vi}. Since we have chosen the 3-symbol alphabet, this characteristic can be easily visualised with two-
dimensional scatter plots by plotting the probabilities of P(0|si) versus P(1|si) (the probability of the third symbol is defined
by the first two). The results for themolecular and the corresponding surrogate time series are shown in Fig. 4. Two features
become clear after the analysis: (i) the distributions are significantly different for the two cases and (ii) the statistic converges
extremely slowly even at the time scale as long as hundreds of nanoseconds. The difference in the shapes of the observed
patterns thus quantifies the deviation of probabilities P(vi+1|si) in ourmolecular time series from those expected for a purely
random signal.
In order to analyse the slow convergence in conditional probabilities P(vi+1|si) we studied their dependence on the

length N of the symbolic series. For this we introduced a parameter Disp as the deviation of points around the straight line
approximating the dependence of P(vi+1|si) on N at large values of N (the last 3% of the total simulation interval from 0 to
N). The standard deviations of Disp were plotted as histograms for the molecular signal and the surrogate, Fig. 5, left. The
curve corresponding to the molecular signal demonstrates pronounced fluctuations shifted to larger values of the variance
that implies poorer convergence of the probabilities P(vi+1|si) for the molecular signal.
Finally, in order do provide a quantitative description of the detected poor convergence in the conditional probabilities

of the water time series we utilised the technique known as Computational Mechanics (CM) approach [13]. The CM analysis
introduces a characteristic, Statistical Complexity Cµ, that is calculated over the distribution of conditional probabilities
P(vi+1|si) (see Appendix C for details) and estimates its Shannon entropy. By definition, the Statistical Complexity equals
to zero for either purely random symbolic sequences (all conditional probabilities are equal, i.e. uniform distribution is
observed) or trivial periodic ones (strictly predictable sequence, that is one conditional probability equals to unity, others
vanish), taking non-zero values for ‘‘structured’’ symbolic sequences (non-trivial distribution of conditional probabilities).
The analysis in the CM framework has confirmed that (i) the molecular signal is indeed different from the random

surrogates (the Statistical Complexity is significantly higher for water) and, very unexpectedly, (ii) the value of Cµ never
converges with the length of the simulation N , up to the longest simulations we tried, 1 µs. This is in contrast to the
surrogate symbolic sequence which demonstrates a quick convergence to a constant value, significantly lower than that
for the molecular signal. We thus confirm the conjecture that the stable growth of Cµ with N is the result of the slow
convergence of the conditional probabilities in the water time series, Fig. 4. It is defined not by short time correlations
that could be detected by a standard correlation analysis, but by long time statistical properties of the trajectories of atoms
in the phase space.
Here we would like to make a short remark concerning a possibility that the detected effect is a numerical artefact of

the algorithm used in our MD simulations. For example, a natural question to ask would be: is the phenomenon a simulation
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Fig. 4. Conditional probabilities P(0|si) versus P(1|si) for the signal of Fig. 3, where si are all sequences of 9 symbols from the three symbol alphabet {012};
upper row: molecular signal, lower row: the surrogate; the time shown on the panels is the length of the trajectory used to calculate the plot.

Fig. 5. The histograms of the standard deviations σ of the dependence Disp(N) in the interval N ∈ [30 × 106; 31 × 106], see text; histograms were
calculated for all 9-symbol words occurring in the symbolic sequences of left: a molecular trajectory (thick line) and corresponding surrogate (thin line);
right: the surrogate obtained from the molecular trajectory (thin line) and an artificial symbolic sequence with non-stationary conditional probabilities
(thick line), see text; periodic non-stationarity with the period of 5000 symbols was used; the molecular trajectory and the corresponding surrogate are
the same as used in Fig. 3.

artefact due to the numerical errors and/or the thermostat? We addressed this and other similar questions by a thorough
check of the numerical inaccuracies of the simulation protocol and the use of the thermostat. For this purpose we varied the
thermostat parameters (in the range of several orders of magnitude) as well as wemade experiments with several different
types of the thermostat (deterministic rescaling of velocities or stochastic), as described in Appendix A. In addition, the
simulations with single as well as double floating point precision were compared. In all cases the calculations brought a
statistically identical result, thus, confirming the genuine dynamical origin of the found non-randomness in the molecular
time series.

5. Non-stationary diffusion model

To provide an explanation for the slow convergence of the conditional probabilities of symbolic sub-sequences we have
constructed a simple Markov chain-type model that, on the one hand, has trivial statistical measures, and on the other,
demonstrate significant deviation of Cµ from zero. The application of CM approach to such symbolic sequences reveals
similar results to what was observed for the molecular signal. The model is a ternary random sequence with the following
properties. The probabilities of any of the three symbols in the alphabet {0, 1, 2} are equal to P(0) = P(1) = P(2) = 1/3, as
well as the probabilities for any combinations of two symbols P(00) = P(10) = · · · = 1/9. The conditional probabilities of
the third symbol given a two symbol word are made different and, moreover, they are time dependent. In other words, the
resulting symbolic string is non-stationary.
The introduction of non-stationarity appears to be necessary for producing the symbolic stringswith the desired property

(demonstrating the growth of the Statistical Complexity with the data volume). We have found that the introduction of a
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periodic modulation as a non-stationarity in defining the conditional probabilities in three symbol words causes the shift
in the histograms of the parameter Disp (Fig. 5, right) and also makes Cµ grow with N very similar to the molecular signal.
Moreover, the effect depends on the period of the introduced non-stationarity, being negligible for short periodmodulation,
and becoming pronounced at the time scales of the order of 100 ps modulation. This was in sharp contrast to the case of the
Markov chain with stationary conditional probabilities, that always produced fast convergence and constant value of Cµ.
Thus, we believe that it is the non-stationarity in the transition probabilities that produces the growth of Cµ and exhibits
non-trivial behaviour in their distributions P(vi+1|si).

6. Conclusions

We have found that molecular trajectories of bulk water fill the phase space in a very non-uniform manner and hence
not randomly. This contradicts the simple assumption of the applicability of the random walk model traditionally made in
the case of normal diffusion. The assumption on random motion of atoms is fundamental for many theories of chemical
reaction rates in molecular systems and, thus, our funding may have significant consequences for them. More specifically,
this implies very different waiting times until the required pre-reactive complexes and angles of attack occur compared to
the commonly assumed random searchmechanism. Our results show that themechanism leading to the non-randomness of
the phase space search is the existence of preferable routes in the phase space that leads to the appearance ofmore probable
pieces of the phase space trajectories. We have also found that one of the possible mechanisms for such an unexpected
behaviour can be the modified random walk where the transition probabilities conditioned on the pieces of the trajectory
change in time at the scale of 100 ps and longer.
It is worth noting that several characteristic motions of molecules are known to exist in water (however, specific

molecular structures and mechanisms are still the subject of active discussion, see, for example, Refs. [14,15]). Classified
by the time scale, they include librations (<1 ps), rearrangements within the ‘‘cage’’ of the nearest molecules (≈1 ps), and
long-term motions causing the hydrodynamic ‘‘tails’’ in the correlation function (tens of picoseconds). However, all these
phenomena can be unambiguously identified by the standard analysis with the autocorrelation function and have the time scales
much shorter that the discussed convergence rates of conditional probabilities in the symbolic time series. Finally, we have
also found that the described phenomenon is probably not linked to any unique properties if water, since it is also found
in other molecular liquids (we tested liquid argon, octanol, and octanol-water mixtures). Therefore, it seems to be a rather
general property of liquid molecular systems.
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Appendix A. Simulation details

Bulkwater consisting of 392 or 878 SPC, SPC-E (Simple Point Charge Extended) [16], or TIP3P (Transferable Intermolecular
Potential 3 Point) molecules were simulated using the GROMACSmolecular dynamics [17] package. The temperature of the
system was kept constant at 300 K using Berendsen [18] or Nose–Hoover [19] thermostats, with a coupling time of 0.1 ps,
whose combination with various coupling constants was investigated. Pressure coupling was also applied to a pressure
bath with reference pressure of 1 bar and a coupling time of 0.1 ps. A 1 nm cutoff distance for both van der Waals and
Coulomb potentials was used. An equilibration until the potential and kinetic energies reach constant levels of fluctuations
was performed before collecting data for analysis. The velocity or the coordinate of the oxygen and hydrogen atoms of one
of the water molecules was used as a 3-dimensional signal for the analysis. Instant temperature, Tinst = 1

Ndf k

∑
imiv

2
i , where

the summation is over all atoms, Ndf is the number of degrees of freedom and k is the Boltzmann constant, was also used
for the analysis. The simulation time step was 2 fs and all time points were used in the analysis.

Appendix B. Converting the molecular signal into a symbolic sequence

To discretise the three-dimensional velocity trajectories of individual atoms of the molecular system we used its
intersections with the xy cross-section plane (similar to Poincare section in dynamical systems theory). For hydrogen water
atoms, for example, the average time interval between the intersections was equal to 0.032 ps. Very conveniently, it roughly
corresponds to the first minimum on the autocorrelation function, obeying the general rule for time sampling of signals. The
resulting two-dimensional points approximately uniformly cover the area and form a centrally-symmetric distribution of
points, Fig. 6.
In order to convert the points at the cross-section into a sequence of symbols from a finite alphabet, an appropriate

partitioning of the continuous space is required. A natural choice for such partitioning is the generating partition (GP) [20]
that has the property of a one-to-one correspondence between the continuous trajectory and the generated symbolic
sequence. That is, in the ideal case of GP, all information is retained after the symbolisation.
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vx

v y

Fig. 6. The process of converting the continuous atomic velocity signal v into symbolic sequence. On the right the symbolisationwith 2, 3, 4, and 5 symbols
are shown.

Consider a dynamical system xi+1 = f(xi), f : M → M and a finite collection of disjoint open sets {Bk}Kk=1, partition
elements, such that for their closuresM =

⋃K
k=1 B̄k. Given an initial condition x0, the trajectory {xi}

n
i=−n defines a sequence

of visited partition elements {Bxi}
n
i=−n or {si}

n
i=−n, where si are symbols from the alphabet that mark the elements where

xi ∈ Bi. For a generating partition the intersection of all images and pre-images of these elements is, in the limit n→∞, a
single point:

⋂n
i=−n f

(−i)(Bxi).
This elegant mathematical construct has two disadvantages when applied to realistic molecular signals. First, an

algorithm for calculating a GP in a general case is unknown. Second, it is shown for simple tent maps [21] that the values of
statistical complexity for different GPs of the same system are different (a system can have many GPs, not to confuse with
the uniqueness of a symbolic representation of a trajectory for a given GP).
Recently methods for finding approximations for GP are reported. The method from Ref. [10] is shown to reproduce GP

for known systems and can treat multi-dimensional observed time-series data. The results of the application of this method
to our velocity data using 2, 3, 4, and 5 partitions are shown in Fig. 6. For all cases the resulting approximations to GP are
centrally symmetric (reflecting the central symmetry of the data points distribution). Thus, for our signals we used centrally
symmetric 3-partitions in all subsequent calculations.
Summarising, in converting the three-dimensional molecular trajectories into symbolic sequences we, first, built a two-

dimensional map by finding the intersections of the trajectory with the xy-plane and, second, assigned a symbol to each
point of the map depending to what segment of the partition the point belongs (Fig. 6).

Appendix C. Computational mechanics

Computational Mechanics analyses symbolic sequences that represent a temporal dynamics of some system. All past A−i
and future A+i halves of bi-infinite symbolic sequences centred at times i are considered. Two pasts A

−

1 and A
−

2 are defined
as equivalent if the conditional distributions over their futures P(A+|A−1 ) and P(A

+
|A−2 ) are equal. A causal state ε(A

−

i ) is a
set of all pasts equivalent to A−i : εi ≡ ε(A

−

i ) = {λ : P(A
+
|λ) = P(A+|A−i )}. At a given time moment the system is in one of

the causal states, and moves to the next one with the probability given by the transition matrix Tij ≡ P(εj|εi). The transition
matrix determines the asymptotic causal state probabilities as its left eigenvector P(εi)T = P(εi), where

∑
i P(εi) = 1. The

collection of the causal states together with the transition probabilities define an ε-machine.
It is proven [22] that the ε-machine is

– a sufficient statistic, that is it contains the complete statistical information about the data;
– aminimal sufficient statistic, therefore the causal states can not be subdivided into smaller states;
– a unique minimal sufficient statistic, any other one simply re-labels the same states.

The Statistical Complexity is the information-theoretic measure of the size of the ε-machine and quantifies the amount
of information about the past of the system that is needed to predict its future dynamics: Cµ = H[P(εi)], where H is the
Shannon entropy.

Appendix D. Robustness of the results with respect to various projection of the phase space

Two parameters of the algorithm should be set in calculating Cµ of a signal of given length, the alphabet size K and the
length l of the histories s− used by the ε-machine reconstruction algorithm CSSR.
The dependence of Cµ on both parameters is shown in Table 1. The convergence with l is excellent, so that for l ≥ 6 the

algorithm produces almost identical results. Reliable results for large alphabet sizes K are more difficult to obtain because
for higher K much longer signals are required. This explains the somewhat increased values of Cµ for K = 5 in Table 1.
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Table 1
Statistical Complexity Cµ vs. the length of histories l (K = 3) and the alphabet size K (l = 6) for bulk water hydrogen velocity 60 ns long signal.

l Cµ K Cµ

2 3.17 2 5.22
3 4.75 3 7.95
4 6.11 4 8.23
5 7.31 5 8.68
6 7.95
7 8.15
8 8.21
9 8.29
10 8.37

Varying the position of the Poincare section plane along the z axes did not lead to any significant change in the results.
The effect of various partitionings of the continuous space has been checked by applying non-symmetric (same as symmetric
but shifted along the x and/or y axes) partitions. In all shifted partitioning cases this resulted in somewhat lower values of
Cµ. Any variants of centrally symmetric partitioning produced identical results.
Finally, different values of the adjustable parameter of the CSSR algorithm, the significance level for the χ-squared test

that quantifies the statistical equivalence of the histories, has been checked. For the values of 0.001, 0.01, and 0.1, the same
qualitative behaviour of Cµ has been reproduced.
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