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A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics
has been developed for the simulation of liquids at microscale. The idea of the method is to
smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz
fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic
conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning
of a partial concentration in the two-phase analogy model. In comparison with our previous works,
the implementation has been extended to full 3D simulations for a range of atomistic models in
GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable
function s. Preliminary results of simulating the diffusion of a small peptide in water are also
reported. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923011]

I. INTRODUCTION

Classical Molecular Dynamics (MD) methods are devel-
oped to such a level that they not only reproduce macroscopic
(thermodynamic) and some microscopic (such as radial
distribution functions (RDFs) and autocorrelation functions)
properties of simple liquids, for which they were originally
designed, but also provide qualitative and sometimes quan-
titative description of complex biomolecular structures and
their functionality.1,2 Obtained atomistic details reproduce
experimentally measured structural and dynamical properties
of such systems from small peptides3 to medium size proteins4

and cell membrane5–7 to as large as whole cellular organelles
or entire viruses.8,9 These all-atom “ab initio” results allow
the investigation of the system at larger spatial and temporal
scales providing the description at experimentally inaccessible
intermediate scales between atomistic and macroscopic levels
and leading to the appearance of new kinds of objects
(complicated structures of “molecular machinery” of the cell,
its sophisticated functional motions, collective dynamics of
sets of molecules, etc.).

Moreover, several different scales are often needed to be
considered simultaneously, in a hierarchy of levels providing
a holistic picture of the molecular system. Complex system of
transitions from level to level, if described correctly, provides
a new global understanding of the physical properties of the
whole system based on the elementary low level interactions of
atoms. The importance of such description is recognized and

a)Author to whom correspondence should be addressed. Electronic mail:
i.korotkin@qmul.ac.uk

multiscale models are developed very actively recently.10–12

The applications cover a wide spectrum of systems in biology,
chemistry, material science, and other fields.13–18

The development of multiscale methods for molecular
systems is most often associated with the Coarse Graining
(CG) idea.5,19–21 Here, at larger scales, new objects are
introduced that approximate groups of atoms as single entities.
The dissipative particle dynamic method is a well-known
example of CG,22–25 widely applied to biological objects
and implemented in popular software, such as GROMACS,26

i.e., MARTINI, and other.6,27–30 The difficult question of
correct connection between the scales is being investigated,
for example, the authors of Ref. 7 describe the relationship
between the MD and the CG states using a Markov process,
the so-called “cross-graining.” Another example of linking
the “fine-grained” and “coarse-grained” phases is reported in
Refs. 27 and 28, where the connection is carried out smoothly
through an interphase parameter λ.

One of the main disadvantages of CG methods is their
strong dependence on the choice of the CG inter-particle poten-
tials. The main goal in developing a CG method is to construct
an adequate interaction potential between selected parts of
the system which are considered simply as “larger atoms”
or “blobs” (albeit more complex than real atoms). Despite
possible connections to statistical mechanics, such as between
the multi-coarse-grained method and the liquid state theory,31

the CG procedure is non-trivial and strongly influences the
final description of the physics of the processes in the system.

For “simple” liquids, such as water at normal condi-
tions, the CG procedures are well established and can be
successfully used for multiscale modelling in the framework

0021-9606/2015/143(1)/014110/17/$30.00 143, 014110-1 © 2015 AIP Publishing LLC
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of the geometrical domain decomposition approach based
on Lagrangian particle-to-particle methods. For example, in
Refs. 32–34, a family of adaptive resolution methods (AdResS
and H-AdresS) is proposed where an all-atom simulation was
conducted in a part of the solution domain; the surrounding
solvent was represented with a simplified CG description,
and in the “buffer” region in between, the atoms gradually
reduced their Degrees Of Freedom (DOFs) to become CG
“blobs.” In the original work by Praprotnik et al.,32 there was
a special thermostat used to suppress the unphysical pressure
and density rise in the hybrid buffer zone. The correction effect
of this special thermostat was later replaced by the so-called
free energy compensation term in the model of Español et al.,34

which made the method energy conservative at the price of
losing the momentum conservation.

Another class of multiscale methods is based on represent-
ing a part of the system as a structureless continuum. In the
MD community, these are known as “implicit solvent” models
and they are used for economical modelling of water and other
solvents surrounding the molecule of interest. Historically,
first attempts to link different scales in molecular systems use
this idea allowing the atoms to leave and enter the continuum
part of the system. A serious conceptual problem here is the
existence of a boundary between the atomistic and continuum
(hydrodynamic) parts. Achieving correct balance of mass and
momentum flow across this boundary without introducing arte-
facts in the fully atomistic part of the simulation, which is
very sensitive to the interface location between the atomistic
and hydrodynamic representations of the same liquid, is a very
non-trivial task.16 In the so-called state variable schemes,10,13,17

the coupling between the fully atomistic and hydrodynamic
regions is established with particle-in-cell type of methods.
In such methods, the Lagrangian (MD particles) and Eulerian
(continuum) parts of the system are coupled through a finite
size overlapping zone ensuring the conservation of bulk mass
and momentum fluxes. The use of the overlapping zone allows
for a smoother transition between the two representations in
comparison with the flux coupling through a boundary inter-
face. In the state variable schemes, there is always some inter-
polation “switch” parameter used. The meaning of this param-
eter in the hybrid “buffer” zone between the pure atomistic and
the pure continuum parts of the domain is typically obscure.

In the work of Markesteijn et al.12 and Pavlov et al.,18

a different approach for state variable coupling between the
molecular dynamics and hydrodynamics representations of
the same liquid was introduced. In comparison with other
multiscale modelling literature, our method uses the modelling
framework of a physical analogy to specify the coupling terms
in the “buffer” zone between the atomistic and hydrodynamic
regions. Physical analogy methods for coupling models of
different resolutions have been used in continuum fluid dy-
namics for several decades. A classical example is the Lighthill
acoustic analogy35 which was introduced in continuum hydro-
dynamics to bridge the scale differences that span 3-4 orders
of magnitude between the sound waves in the range of audible
frequencies and the turbulent flow structures which generate
sound. Since the original work of Lighthill,35 various hybrid
methods of this kind were developed with a general idea to
exactly rearrange the governing Navier-Stokes equations to

the form of non-homogeneous linear equations for acoustic
propagation (“coarse-grained” model) and a non-linear source
(“fine-scale” model). For most advanced approaches of this
type (for example, Refs. 36–38), the non-linear source is
directly related to the properties of fine scale solution (the
space and time scales of the turbulence). Following a similar
line of thought, for multiscale modelling of the liquids across
atomistic and hydrodynamic scales, in the work of Markesteijn
et al.,12 the classical Buckley-Laverett filtration model39 was
considered in the context of a two-phase flow analogy and
implemented for 2D liquid argon simulations at high pressure
conditions. In the work of Scukins et al.,40 the same two-
phase flow analogy was extended to 2D water modelling where
the Mercedes-Benz model41 was used for the MD part of the
solution. The idea of the hybrid method is to consider two
representations of the same liquid, one is particles (atomistic)
and one is Eulerian control cells (continuum) simultaneously.
The particle and continuum parts of the solution were treated
as “phases” of the same liquid in accordance with the conser-
vation laws. The communication was controlled by a user
defined function of space and time s (x, y) which described
the influence of the representations on each other and had
the meaning of partial concentration of the “phases” in the
two-phase flow analogy. In comparison with the determin-
istic Navier-Stokes equations of the original Buckley-Laverett
model, here the Landau Lifshitz Fluctuating Hydrodynamics
(LL-FH) equations42,43 represent the continuum part of the
solution in the current multiscale model based on the two-
phase flow analogy.

The LL-FH equations allow for a correct statistical
description of the collective properties of liquids including
thermal fluctuations. Being Stochastic Partial Differential
Equations (SPDEs), the LL-FH equations are more numeri-
cally challenging in comparison with the deterministic Navier-
Stokes equations. Notably, however, the LL-FH equations are
still amenable to solution with finite differences,44–46 finite
volumes,16,47,48 or the lattice Boltzmann method.49,50

This publication is the first step in extending the hybrid
multiscale model based on the two-phase flow analogy to 3D
applications in the framework of a popular open source molec-
ular dynamics software such as GROMACS.26 Presently, a
one-way coupling implementation is considered which is rele-
vant to flow regimes when the continuum part of the solution
does not require a feedback from the atomistic part and, thus,
can be obtained from a separate hydrodynamics modelling.

The paper is organised as the following. In Sec. II, main
equations of the hybrid multiscale approach based on the anal-
ogy with two-phase modelling are outlined (Subsection II A)
and the current one-way coupling implementation is intro-
duced (Subsection II B), and numerical results are provided in
Sec. III.

II. HYBRID MULTISCALE
HYDRODYNAMICS/MOLECULAR DYNAMICS MODEL

A. Governing equations of the two-way
coupling model

Following the work of Markesteijn et al.,12 a nominally
“two-phase” (MD and LL-FH) liquid model is considered as a
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representation of the same chemical substance. The “phases”
are immersed into each other as “fine grains,” the surface
tension effects are irrelevant, and both parts of the solution
simultaneously occupy the same cell in accordance with their
partial concentrations. The partial concentration of the MD
“phase” and the LL-FH “phase” is equal to s and 1 − s,
respectively, where s is a parameter of the model 0 ≤ s ≤ 1.
In general, s is a user-defined function of space and time
which controls how much atomistic information is required in
a particular region of the simulation domain.

Let’s consider a solution domain of volume V0 which is
broken down into elementary Eulerian cubical cells of volume
V . Each cell has 6 faces γ = 1, . . . ,6 and it is filled with the
continuum part of the liquid and, at the same time, with the
MD particles which correspond to a discrete representation of
the same chemical substance. It is assumed that the continuum
part of the nominally two-phase fluid has the same transport
velocity as that of the mixture. At isothermal condition, this
nominally two-phase liquid in addition to the macroscopic
equation of state (EOS) satisfies the following macroscopic
conservation laws. For mass,

δt(sm) +

γ=1,6

(sρū) dnγδt = δt J(ρ), for the LL-FH phase,

(1)

δt
*.
,
(1 − s)


p=1,N (t)

mp
+/
-
+


γ=1,6

*.
,
(1 − s)


p=1,Nγ(t)

ρpup
+/
-

dnγδt

= −δt J(ρ), for the MD phase, (2)

where m and ρ = m/V are the mass and the density of the
continuum “phase” of the elementary volume V , mp is the par-
ticle mass, up is the MD velocity, ū is the average velocity of

the “mixture” ūi =


sρui + (1 − s) 

p=1,N (t)
ρpui p


/ρ̄, ui is the

velocity of the continuum LL-FH “phase,” ρ̄ = sρ + (1 − s)
p=1,N (t)

ρp, and N (t) is the number of particles in the volume

V . Nγ(t) is the number of particles crossing the γth cell face
with the normal dnγ, ρp = mp/V is the effective density of a
MD particle p which occupies the volume V , and δt J(ρ) is the
mass source/sink term which describes the transformation of
mass between the “phases” and δt describes the change of a
quantity over time δt, e.g., the counters of particle mass and
momentum in cell V accumulated over time δt.

For momentum, this is

δt(smui) +

γ=1,6

(sρuiū) dnγδt

= s

j=1,3


γ=1,6

�
Πi j + Π̃i j

�
dnγj δt + δt J

(u)
i , (3)

δt
*.
,
(1 − s)


p=1,N (t)

mpui p
+/
-

+

λ=1,6

*.
,
(1 − s)


p=1,Nγ(t)

ρpui pup
+/
-

dnγδt

= (1 − s)


p=1,N (t)
Fi pδt − δt J

(u)
i , (4)

where Π and Π̃ are the deterministic and stochastic parts of
the Reynolds stress tensor in the LL-FH model, Fi p is the MD
force exerted on particle p due to the pair potential interactions,
and δt J

(u)
i is the LL-FH/MD exchange term corresponding to

the ith momentum component.

The sums of fluxes


γ=1,6

*
,
(1 − s) 

p=1,Nγ(t)
ρpup

+
-

dnγδt

and


λ=1,6

*
,
(1 − s) 

p=1,Nγ(t)
ρpui pup

+
-

dnγδt are the correspond-

ing counters of particle mass and momentum crossing the
cell’s boundaries γ = 1, . . . ,6.

In theory, the flux terms can be calculated from the particle
distributions at each point of the cell boundary. In practice, for
computing the cell-boundary values, an interpolation method
can be used based on the particle distributions specified at
the centres of adjacent volumes V , e.g., in a finite-volume
framework.

By summing up mass equations (1) and (2) and assuming
the conservation fluxes vanish at the domain boundaries, it
follows from the divergence theorem that the mass conser-
vation law for the mixture is exactly satisfied, m̄(t + δt)
= m̄(t), m̄ = ρ̄V . In a similar way, by combining momentum
equations (3) and (4), it can be seen that the Newton’s second
law, which equates the change of the total momentum m̄ · ū
to the force applied, F̄i = s


j=1,3


α=1,6

�
Πi j + Π̃i j

�
dnα

j δt + (1
− s) 

p=1,N (t)
Fi p, is satisfied. Note that the latter expression

for the force applied in the hybrid system is similar to
the interpolation used in the original AdResS method32 for
particle-particle interaction.

In (1)-(4), ∂t J(ρ) and ∂t J
(u)
i are the user defined functions

which need to be specified to close the model. These functions
can be obtained from specifying how fast the mixture averaged
values ρ̄ and ūi ρ̄ should equilibrate to the cell averaged
parameters from the MD “phase” of the simulation,


p=1,N (t)

mp

and


p=1,N (t)
ui pmp,

Dt
*.
,
m̄ −


p=1,N (t)

mp
+/
-
= L(ρ) · *.

,
m̄ −


p=1,N (t)

mp
+/
-

and

Dt
*.
,
ūim̄ −


p=1,N (t)

ui pmp
+/
-
= L(u) · *.

,
ūim̄ −


p=1,N (t)

ui pmp
+/
-

+ s

j=1,3


γ=1,6

�
Πi j + Π̃i j

�
dnγj δt,

(5)

where

Dt
*.
,
m̄ −


p=1,N (t)

mp
+/
-
= δt

*.
,
m̄ −


p=1,N (t)

mp
+/
-

+

γ=1,6

*.
,
ρ̄ −


p=1,Nγ(t)

ρp
+/
-

udnγδt
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and

Dt
*.
,
ūim̄ −


p=1,N (t)

ui pmp
+/
-
= δt

*.
,
ūim̄ −


p=1,N (t)

ui pmp
+/
-
+


γ=1,6

*.
,
ūi ρ̄ −


p=1,Nγ(t)

ui pρp
+/
-

udnγδt (6)

are integral analogues of the full conservative derivatives in the case of smooth variable fields using the divergence theorem,
and, using the same theorem, the operators at the right-hand side of

L(ρ) · *.
,
m̄ −


p=1,N (t)

mp
+/
-
=


k=1,3


γ=1,6

*.
,
s(1 − s) · α · 1

V
*.
,


λ=1,6

*.
,
ρ̄ −


p=1,Nλ(t)

ρp
+/
-

dnλ
k
+/
-

+/
-

dnγ
k
δt

and

L(u) · *.
,
ūim̄ −


p=1,N (t)

ui pmp
+/
-
=


k=1,3


γ=1,6

*.
,
s(1 − s) · β · 1

V
*.
,


λ=1,6

*.
,
ūi ρ̄ −


p=1,Nλ(t)

ui pρp
+/
-

dnλ
k
+/
-

+/
-

dnγ
k
δt (7)

are integral analogues of the corresponding second order diffusion derivative.
In the above equations, α, β > 0 are two adjustable parameters, which characterise how fast the two “phases” equilibrate to

the same macroscopic condition, i.e., converge to the same liquid they represent. The characteristic relaxation time associated
with these parameters τdiff ∼ ∆x2/α ∼ ∆x2/β, where ∆x ∼ V 1/3 is the length scale associated with the cell volume V , should
be comparable to the time step of the particles τdiff ∼ τMD so that the relaxation process affects the particle trajectories over
their characteristic time scale (also see the modified MD equations in the hybrid MD/LL-FH zone below). For example, for too
small values of the relaxation parameters α, β, the MD part of the simulation runs away from the continuum part which leads
to divergence of the atomistic part of the solution from the continuum one. For too large values of the coupling parameters, the
system of equations becomes too stiff and numerically unstable.

To close the model, (5)-(7) are combined with the following equations of mass and acceleration for the particles in each
Eulerian cell,

δt


p=1,N (t)
mp +


γ=1,6

*.
,


p=1,Nγ(t)

dxp

dt
ρp

+/
-

dnγ · δt = 0,

δt


p=1,N (t)
mpui p +


γ=1,6

*.
,


p=1,Nγ(t)

dxp

dt
ρpui p

+/
-

dnγ · δt =


p=1,N (t)
mpai pδt, ai p =

dui p

dt
,

(8)

which defines the source/sink terms in (1)-(4) and the modification to MD particle equations for velocity and acceleration,
dxp
dt
= up,

dup

dt
= Fp as the following:

dxp

dt
= up + s(ū − up) + s(1 − s) · α ·


γ=1,6

*
,
ρ̄ − 

q=1,Nγ(t)
ρq+
-

dnγ


q=1,N (t)

mq
,

dui p

dt
= (1 − s)Fi p/mi p +


k=1,3


γ=1,6

*.....
,

s(1 − s) · α ·


q=1,Nγ(t)
ρquiq ·

*.....
,


λ=1,6

(
ρ̄ − 

q=1,Nλ(t)
ρq

)
dnλ

k
q=1,N (t)

mq

+/////
-

+/////
-

dnγ
k
/


q=1,N (t)

mq

+

k=1,3


γ=1,6

*.
,
s(1 − s) · β · 1

V
*.
,


λ=1,6

*.
,
ρ̄ · ūi −


q=1,Nλ(t)

ρquiq
+/
-

dnλ
k
+/
-

+/
-

dnγ
k
/


q=1,N (t)

mq, i = 1,3,

(9)

where the macroscopic fields ρ̄, ū,


q=1,N (t)
ρq, and


p=1,N (t)

ρquq

correspond to cell-average values at each location x of MD
particle p. For a practical computation, the values of these
fields can be determined by interpolation, in the same way as
the cell-face fluxes in Equations (1)–(4). Derivation details are
given in Appendix.

Notably, modified MD equations (9) depend only on
the mixture conservation variables and the cell-averaged MD
solution. For the numerical implementation, it is convenient
to solve (9) together with the conservation equations for
the mixture density and momentum, (5)-(7), rather than the
original equations (1)–(4) which become degenerate in the
limit of s = 0 or s = 1. Because of the stochastic stresses
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included, Equations (5)–(7) are stochastic partial differential
equations, similar to LL-FH equations which are their limiting
case. Indeed, in the case when the continuum “phase” is the
only part of the hybrid model (i.e., when s = 1 and when
there are no MD particles), Equations (5)–(7) for the mixture
density and momentum reduce to the classical Landau-Lifshitz
fluctuating hydrodynamics equations.

In addition to the conservation of mass and momentum
of the “mixture,” models (5)-(7) also directly satisfies the
Fluctuation Dissipation Theorem (FDT) in the limiting states
when s = 0 and s = 1, that is, for the pure MD and the pure
LL-FH equations. In the hybrid MD/LL-FH region, assuming
the two parts of the solution are fully relaxed to the same
macroscopic state, the diffusion terms that are proportional to
the discrepancy between the MD part of the solution from the
“LL-FH” part vanish and the coupling terms of hybrid models
(9) just become a linear combination of the LL-FH and the
cell-averaged MD velocities and forces and, hence, satisfy the
FDT because of the linearity. In practice, the assumption of
full relaxation of the two “phases” to the same macroscopic
state needs an a posteriori confirmation. Such confirmation
will also be reported in Sec. III of the paper.

B. Simplified one-way coupling model

For the sake of the implementation in this paper, we
will only consider macroscopically stationary liquids in the
absence of any hydrodynamic gradients and away from solid
boundaries. Under such assumptions, thermal fluctuations
are the only source of macroscopic fluctuations in liquids
described by the LL-FH model.

Therefore, we assume that equations of “two-phase
mixture” (5) and (6) are completely decoupled from the MD
“phase” and the corresponding conservation variables, ρ̄ and
ūi, which drive MD equations (9), can be obtained from a
separate hydrodynamics calculation. As discussed in Sec. II A,
it is the LL-FH equations which need to be solved in this case,

∂ ρ̄

∂t
+ div ( ρ̄ · ū) = 0,

∂ ( ρ̄ · ūi)
∂t

+ div ( ρ̄ · ūi · ū)

=

j=1,3

∇ j

�
Πi j + Π̃i j

�
, i = 1,2,3,

(10)

where the EOS, p̄ = p̄( ρ̄), and the shear and bulk viscosity
coefficients, η and ζ , which enter the Reynolds stress Π and
its fluctuating component Π̃,

Πi, j = − (p̄ − ζ div ū) δi, j + η �∂iū j + ∂iū j − 2D−1 div ūδi, j
�
,

Π̃i, j = ζ div ũδi, j + η
�
∂iũ j + ∂iũ j − 2D−1 div ũδi, j

�
,

i, j = 1,2,3, (11)

need to be defined in accordance with the MD model as will
be discussed in Sec. II C.

In the above equations, the stochastic stress tensor Π̃ is
described as a random Gaussian matrix with zero mean and
covariance, given by the formula


Π̃i, j(r1, t1)Π̃k,l(r2, t2)�
= 2kBT

�
η
�
δi,kδ j,l + δi,lδ j,k

�
+
�
ζ − 2D−1η

�
δi, jδk,l

�

× δ(t1 − t2)δ(r1 − r2). (12)

Using this correlation, the stochastic stress tensor can be
expressed explicitly as42

Π̃i, j �


2kBT
δtδV

(√
2
√
η · GS

i, j

+
√

D

ζ · tr [G] · Ei, j/D

)
, i, j = 1,2,3, (13)

where G is a random Gaussian matrix with zero mean

and covariance


Gi, jGk,l

�
= δi, jδk,l,GS

i, j =
Gi, j + GT

i, j

2
− tr[G] · Ei, j/D is a random symmetric matrix with zero trace,
E is the identity matrix, and tr [G] is the trace of the matrix G.

For the current one-way coupling implementation of
the hybrid multiscale model, LL-FH equations (10)–(13) are
solved together with MD equations (9). The MD particles
are present everywhere in the solution domain including the
hydrodynamics dominated zone where the periodic boundary
conditions are specified. For a large size of the LL-FH zone,
the current implementation can still be made efficient in
comparison with the all-atom simulation since the cost of
the LL-FH model in comparison with the MD simulation is
negligible. For example, in MD computing, the interaction
potentials scale as N Log N , where N is the number of
MD particles. The reduction of the computational cost for
the hybrid model in comparison with the all-atom simulation
can be up to Log N . Further computational savings can be
achieved by introducing spatially variable space-time scales
into the simulation with expansion from fine atomistic to large
hydrodynamic scales where the MD particles would lose their
mobility because of small thermal fluctuations in large cell
volumes and, thus, could be constrained to a small part of the
solution domain. This work is underway.

To complete the model description, the “partial concen-
tration” function s = s(x, y, z) needs to be specified. Here,
two types of the s function are considered: (i) a constant
field across the whole system as in Refs. 12 and 18 for 2D
modelling and (ii) a zoom-shape function allowing to vary the
model resolution based on a user defined geometrical shape of
s(x, y, z), which can be viewed as a 3D version of the circular
zone considered in Ref. 40. For the latter, two types of the
variable s-function were used. In one, s varies along the x
direction only, s = s(x), and in the other, it has a spherical
symmetry (Fig. 1),

s (x, y, z) =



Smin, r ≤ RMD,

r − RMD

RFH − RMD
(Smax − Smin) + Smin, RMD < r < RFH,

Smax, r ≥ RFH,

(14)
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where r = (x − L/2)2 + (y − L/2)2 + (z − L/2)2, L is the
computation box size, x, y, z ∈ [0,L], Smin = 0, and Smax = 1.

In Fig. 1, the red region with water molecules is the
purely atomistic domain that gradually changes through
white (hybrid atomistic-continuum region) to blue (purely
fluctuating hydrodynamics region).

C. Numerical details of solving the continuum fluid
dynamics equations and communication with the MD
part of the solution

The LL-FH equations are solved in conservation forms
(11) and (13) with the two-time-level modification of the
Central Leapfrog scheme from Ref. 46. The modified Central
Leapfrog scheme uses a low dissipative nonlinear flux
correction for stability. It is simple for implementation and,
despite this, accurately predicts the correct value for the
thermal fluctuations on par with the most accurate three-stage
Runge–Kutta methods such as in Refs. 45 and 51. However,
in comparison with the latter scheme, the computational cost
of the current single stage Central Leapfrog scheme is about
3 times smaller.

For solving the LL-FH equations, the case specific EOS is
important for coupling the continuum equations with the MD
solution.46 However, unlike the continuum LL-FH domain, the
EOS of the MD domain is a result of the simulation rather than
a relation prescribed as the model input. Therefore, to ensure
similar behaviour in both domains, a separate MD simulation
is used to determine the EOS of the investigated fluid. In the
current work, the method of determining EOS from Ref. 46
is used, which consists of the following steps: (1) several all-
atom MD simulations are performed with different average
densities, (2) in these simulations, the pressure of the system
is calculated using the Irving and Kirkwood expression for
pressure,52 (3) a polynomial fit is done on the resulting pressure

FIG. 1. Variable s parameter and MD sphere inside the computation box.
The red zone is the pure MD region (s = 0), while the blue is the fluctuating
hydrodynamics region (s = 1) for the spherically symmetrical s-function case.

versus density curve, and (4) the polynomial fit is substituted
in the Reynolds stress tensor of the LL-FH equations.

In addition to the EOS, there are other important param-
eters that need to be specified for the LL-FH domain, namely,
the values for the shear and bulk viscosities. Similar to the
EOS, the viscosity of the MD fluid is a result of the simulation
rather than an input parameter. Therefore, the value obtained
from a MD simulation is used as an input parameter for the
LL-FH domain. The computation of viscosity coefficients of
water needs a special attention. Indeed, as it is known from the
literature, the viscosity computed when using water models is
not the same as the experimental value of water.53–57 Therefore,
it is the viscosities which correspond to the particular MD
water models rather than the experimental values that are used
in the continuum model as mentioned in Table I. The values
for the shear and bulk viscosities for argon are less sensitive
to the MD modelling and in this work, they are taken from
Ref. 47.

The computation of new coordinates and velocities of
atoms in (7) consists of two stages: (i) obtaining the cell-
averaged field variables ρ̄ and ūi from the solution of the
LL-FH equations as well as the corresponding cell-averaged
quantities


p=1,N (t)

ρp and


p=1,N (t)
ui pρp from the MD particles

which are also averaged in time to be compatible with
the hydrodynamics variables and (ii) reconstruction of the
continuously varying distributions of the field variables inside
each LL-FH cell to be used in MD particle equations (9).

For consistency with the numerical solution of continuum
equations (11) and (13), which correspond to a certain time
step, or time-averaging in accordance with the hydrodynamics
time scale, that is 10 times larger than the MD time step
for the present hybrid model, the cell-averaged MD fields
p=1,N (t)

ρp and


p=1,N (t)
ui pρp should also be averaged in

time accordingly. Although this is a standard practice when
continuum information is extracted from MD simulations,
inconsistencies occur when the sampling is taken over too few
atoms or too small cell sizes.48 The main reason for this is the
fact that the sampling only takes into account the coordinate of
the centre of mass of every atom, which is directly translated
to a (single) discrete LL-FH cell index. This makes perfect
sense from a molecular point of view, as the nucleus (and not
the electron cloud) accounts for almost all the atom’s mass
and therefore, most of the mass would be in a single LL-FH
cell. However, when the fluctuations are examined on per cell
basis using this simple sampling technique, the statistics of
these fluctuations do not match the continuum observables.48,58

A straightforward method that can be applied to match the
continuum observables extracted from all atom simulations
is to use so-called mapping techniques.48,58 By using such a
technique, each atom or molecule is taken into account as a
cubical blob having a centre that corresponds to the centre
of mass of the atom or molecule, and a corresponding side
length d that can be tuned such that the continuum observables
match. However, as is further explained in Ref. 58, different
blob sizes should be used for different continuum observables
(mass and momentum). Additionally, the consistent scaling
and the most appropriate blob size also depend on the type of
atom or molecule, e.g., argon or water.58

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

81.159.75.140 On: Fri, 03 Jul 2015 07:02:14



014110-7 Korotkin et al. J. Chem. Phys. 143, 014110 (2015)

TABLE I. Simulation parameters used in GROMACS for argon and SPC/E water and the viscosity values used
in the LL-FH code.

Argon Argon (acoustic wave test) SPC/E water

Number of atoms (molecules) 64 000 32 000 91 125 (30 375)
Molecular mass (g mol−1) 39.948 39.948 18.015
Temperature (K) 300 300 298.15
Box volume (nm3) 16.21×16.21×16.21 32.424×8.106×8.106 9.686×9.686×9.686
MD time step (ps) 0.01 0.01 0.001
α, β (nm2 ps−1) 1000 1000 5000
Blob size (nm) 0.28 0 0.18
Average density (amu nm−3) 600.24 600.0 602.18
Shear viscosity (amu nm−1 ps−1) 54.74 54.74 409.496
Bulk viscosity (amu nm−1 ps−1) 18.23 18.23 933.41

The numerical simulations in this paper deal with argon
and Extended Simple Point Charge (SPC/E) water and the blob
filtering technique as discussed in Ref. 48 is used to map the
atom coordinates to continuum field approximations. For every
molecule, the centre of mass and the velocity of the centre of
mass are computed. During mapping, the fraction C of each
cubical blob with size d in the LL-FH cells is calculated, where
the centre of the blob coincides with the centre of mass of the
molecule. This means that the contribution of each blob to
cell density and cell momentum is directly proportional to the
fraction C of the blob. The filter works three dimensionally and
assumes periodic boundary conditions everywhere. The size
of the cubical blob for argon is taken as 0.28 nm, while the size
of the cubical blob for SPC/E water is taken as 0.18 nm. These
values gave the best results in our case and are within the range
of values given in Ref. 58. However, the values are slightly
different than the optimal values reported in Ref. 58. The
reason for the difference could be the fact that the equations
solved here are under isothermal conditions, i.e., no energy
equation is solved explicitly.

Once the continuum density and velocity variables,
including the MD fields, are obtained as the cell-averaged
parameters, the corresponding continuous fields need to be
reconstructed inside each cell for solving (9). The continuity
of the reconstructed fields is important for the hydrodynamic
forces acting on the MD particles to remain bounded across
the boundaries of the LL-FH cells. For the current implemen-
tation, a tri-cubic interpolation method is used which ensures
that the reconstructed solutions are not only continuous but
also smooth, so that the forces which are proportional to the
solution gradient are not only bounded but also continuous
across the cell boundaries.

Both LL-FH equations (11) and (13) and modified MD
equations (9) have been implemented as internal procedures
of the GROMACS 5.0 package for three cases: argon, SPC/E
water, and a peptide system. The general parameters used
in the MD and LL-FH parts of the simulations are given in
Table I. For all simulations, a constant temperature (NVT)
ensemble was used with the Nosé-Hoover thermostat59,60

available in GROMACS. The boundary conditions in all cases
were periodic. For the water models, LINCS algorithm61 was
used to constrain the bonds.

In what follows, the performance of the hybrid model
for a range of constant parameter s = const values throughout

the solution domain is discussed first. Then, the results of
the truly multiscale version of the same model are discussed
when the coarse-graining parameter s becomes a function of
geometrical location in accordance with (14). The focus of
attention here is both in the microscopic solution details such
as in radial distribution and velocity autocorrelation functions
and the macroscopic characteristics such as mean values and
standard deviation (STD) of density and velocity. The capa-
bility of the current hybrid model in the hybrid MD/LL-FH
zone is to satisfy the correct mass and momentum balance and
fluctuations will be probed as well as to correctly preserve the
autocorrelation of density and velocity in accordance with the
fluctuation dissipation theorem and to the transport hydrody-
namics fluctuations such as for acoustic wave travelling from
the LL-FH to MD part of the domain through the intermediate
hybrid zone. Finally, an example of using the current hybrid
MD/LL-FH method for computing the diffusion of water and
a small peptide dialanine in water will be provided.

III. RESULTS

A. Hybrid simulations of argon and water:
Constant s-function

The results of the simulation of liquid argon at high
pressure conditions are presented first. One very important
property to match46,51 is the standard deviation of density and
velocity for the LL-FH and the MD part of the solution. In
accordance with the theory, the standard deviations of the ve-
locity and density fluctuations corresponding to Equations (15)
and (16) are

STD(ρ′) = c−1
T


ρkB

T
Vcell

, (15)

STD(u′) =


kB
T

ρVcell
, (16)

where Vcell is the cell volume, T and ρ are the temperature and
density, while cT is the isothermal speed of sound.

Figure 2 shows the STD of the velocity fluctuations for
argon for several cases. The considered cases are pure MD
(s = 0) using just a simple sampling technique without the blob
filter, the MD part of the solution for two intermediate cases
with constants s = 0.1 and s = 0.8, and the LL-FH solution.
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FIG. 2. Standard deviation of the velocity fluctuations for argon for four
different cases: pure MD solution (s = 0) without a blob filter, MD part of
the solution for s = 0.1 and s = 0.8, and LL-FH solution.

As can be concluded from the figure, the velocity fluctuations
in all cases converge to the same value (∼0.011 nm/ps) within
approximately 3 ns. From this, it is also evident that the blob
filter is not necessary in order to obtain better matching of
the velocity fluctuations. The theoretical value of the velocity
STD for argon according to (15) is 0.0110 nm/ps.

Figure 3 shows the standard deviation of the density
fluctuations for argon for the same cases and for the pure MD
case with the blob filter enabled. Again, all cases, except for
the pure MD without the blob filter, the value converges to the
same value (∼10.7 amu/nm3) which is in good agreement with
the theoretical value of 10.52 amu/nm3 for argon according
to Eq. (15). As expected, the value for the density fluctuations
without the blob filter is significantly overestimated that
clearly shows the need for the filter in order to get the correct
values of density fluctuations.

The actual value of the isothermal speed of sound cT can
be obtained from the relationship between Eqs. (10) and (11),

cT = ρ
STD(u′)
STD(ρ′) . (17)

FIG. 3. Standard deviations of the density fluctuations for argon for five
different cases: pure MD solution (s = 0) without and with a blob filter, MD
part of the solution for s = 0.1 and s = 0.8, and LL-FH solution.

FIG. 4. Radial distribution functions for different s values for argon.

According to Eq. (17) and the results from the simulations,
the simulated speed of sound for argon is approximately
0.617 nm/ps. The theoretical value can be determined from
the equation of state46 which evaluates to 0.63 which is in 2%
agreement with the numerical estimation.

Besides the fluctuations, two other important properties
to examine are the RDF and the velocity autocorrelation
functions (VACFs). Figure 4 shows the RDF as obtained for
different MD/LL-FH cases, here s is changed from constant
s = 0 (pure MD), constant s = 0.1, 0.5, and 0.9 and, for
comparison, also varies in accordance with (14) where only
the atoms inside the MD sphere were used. As is evident from
the figure, the accuracy of RDF is not affected by introducing
the hydrodynamic component into the solution. Since RDF
can be associated with density at microscale, this means that
the current hybrid coupling procedure does not affect the
distribution of atoms preserving the effective density of the
liquid regardless of the continuum “phase” concentration.

Figure 5 represents the VACF for different constant s
values for argon in comparison with each other, the pure MD
(s = 0), and the pure LL-FH (s = 1) cases. It is shown that for

FIG. 5. Velocity autocorrelation functions for different constant s values for
argon.
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FIG. 6. Standard deviations of the velocity fluctuations for SPC/E water for
four different cases: one pure MD case (s = 0), two MD/LL-FH cases with
s = 0.1 and s = 0.8, and pure LL-FH case (s = 1).

the hydrodynamics dominated (large s) cases, the velocities
are highly correlated unlike for the atomistic dominated (small
s) case. The curves for intermediate s smoothly tend from the
pure MD solution to the pure LL-FH solution, while s is
increasing from 0.1 to 1.

The results for SPC/E water modelling are presented next.
First, the fluctuations are compared: Figures 6 and 7 show the
standard deviations of the velocity and density fluctuations for
SPC/E water. Again, the velocity STDs for pure MD, LL-FH,
and the MD part of the hybrid solution converge to a value
of approximately 0.023-0.024 nm/ps. This is in very good
agreement with the theoretical prediction of 0.0238 nm/ps
according to theory (16). On the other hand, similar to the case
of argon, the density STD for pure MD water simulations is
noticeably overestimated. By introducing the blob filter with
the blob size of 0.18 nm, a much better STD prediction is
obtained, approximately 9.8-10.2 amu/nm3 compared to the
theoretical value of 10.06 amu/nm3.

FIG. 7. Standard deviations of the density fluctuations for SPC/E water for
five different cases: pure MD solution (s = 0) without and with a blob filter,
MD part of the solution for s = 0.1 and s = 0.8, and LL-FH solution.

FIG. 8. Velocity autocorrelation functions in the case of variable s for argon.

B. Hybrid simulations of argon and water:
Variable s-function

To investigate the effect of the hybrid MD/LL-FH zone
on the accuracy of the atomistic part of the model for the case
of variable s in the spherical domain described by Eq. (14)
the VACF of argon is calculated next. Only those particles
which are inside the MD sphere where s = 0 are accounted
for in the VACF calculation. Figure 8 shows that the resulting
VACF curve has a similar shape as the pure MD VACF. The
velocities inside the MD region look slightly more correlated
than those of the reference pure MD (all-atom) solution. This
is most likely the effect of the relatively small MD sphere and
high influence of the LL-FH region that can induce collective
movements on the MD particles in the MD region.

To reduce those movements, further work will be devoted
to implementing a larger LL-FH simulation box which
corresponds to a larger buffer zone between the pure MD

FIG. 9. A cross section of the simulation box with SPC/E water in the case
of the variable s simulation; the white and red molecules are water molecules
in the MD region and the blue spheres are the water blobs in the region
dominated by hydrodynamics.
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FIG. 10. Radial distribution functions oxygen-oxygen for different s values
for SPC/E water.

sphere and the LL-FH regions as well as introducing a more
gradual transition from the fine space-time atomistic scales in
the domain centre to the large space-time hydrodynamic scales
at the boundaries of the LL-FH domain, for example, using
the spatially variable time integration approach as discussed
in Ref. 62.

Next, the RDF and VACF are computed for SPC/E water,
for the variable s case in accordance with (14). Figure 9 shows
a snapshot of the SPC/E water simulation for this case. A
cross section of the simulation box where the central sphere
represents the MD region with white and red water molecules
surrounded by blue spheres that represent the heavier and
slower hydrodynamics dominated particles (water blobs) is
shown. Note that the hydrodynamics dominated water blobs
in the figure are represented by spheres purely for clarity
in showing the transition zone between MD and LL-FH. In
reality, these blobs are also water molecules, where the relative
weight of the MD or LL-FH equations is given by the s-value
in accordance with the hybrid MD/LL-FH model.

Figures 10 and 11 show the radial distribution functions
for water (O–H and O–O pairs) for different s parameters

FIG. 11. Radial distribution functions oxygen-hydrogen for different s val-
ues for SPC/E water.

FIG. 12. Velocity autocorrelation functions for different constant s values for
SPC/E water.

including the case with variable s as compared with the
all-atom simulation (pure MD). For the variable s case, the
corresponding solution inside the MD sphere (s = 0) is shown.
Similar to the results obtained for argon, it can be concluded
that the space distribution of water atoms is well preserved for
both constant s and in the MD region when s is variable.

Figure 12 represents the velocity autocorrelation func-
tions for water for different constant s parameters. Here,
unlike the argon case, the water VACFs have local minima and
maxima. For values of s approaching 1, the VACFs become
stretched along the time axis and tend to the LL-FH curve.

The VACF of water inside the MD region in the case of
variable s in comparison with the pure MD case is shown in
Figure 13. It can be noticed that for the first 0.06-0.07 ps, the
functions are the same. After 0.07 ps, the curves are slightly
different due to the finite MD sphere size but the shape is
very similar. This means that for variable s in the MD sphere
with s = 0, the microscopic statistical properties of water are
preserved both in terms of RDFs and VACFs.

Next, the continuity of the density and momentum fields
as well as their fluctuations in the hybrid MD/LL-FH zone

FIG. 13. Velocity autocorrelation functions in the case of variable s for
SPC/E water.
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FIG. 14. Variation of time averaged density and momentum across the hybrid
zone 0 < s < 1 shown by the vertical dotted lines (left, s = 0 and right, s = 1)
for argon.

0 < s < 1 is investigated and compared with the theoretical
solution. For the mixture variables of the current one-way
coupling model, ρ̄ and ūi, which correspond to the solution
of LL-FH equations (11) and (13), the continuity and correct
fluctuations are guaranteed as discussed in Sec. II C. Hence,
it is the MD part of the solution that remains in the focus of
current investigation.

Figures 14 and 15 show the variation of density, mo-
mentum, and their standard deviations for the MD part of
the solution, ρMD =


p=1,N (t)

ρp and uMD =


p=1,N (t)
ui pρp/ρMD,

plotted as a function of radial distance in the hybrid part of
the simulation domain where s varies from 0 to 1. The vertical
dotted lines represent the boundaries of the hybrid zone and
the theoretical solution values are denoted with subscript 0.
It can be seen that the density is preserved within 0.1% and
the momentum is preserved within 0.5% of the mean density
and the product of the mean density and the speed of sound,
respectively. The latter way of normalisation for momentum
was chosen since the mean flow velocity is zero.

FIG. 15. Variation of standard deviation of density and momentum across the
hybrid zone 0 < s < 1 shown by the vertical dotted lines (left, s = 0 and right,
s = 1) for argon.

The standard deviations of density and velocity of the MD
part of the hybrid solution across the hybrid zone fluctuates
5%-7% around the theoretical values. The results are obtained
for argon and remain similar for the case of the water model
considered in this section.

To confirm that the MD part of the solution satisfies to
the fluctuation dissipation theorem, one needs to show that
(i) the auto-correlation amplitudes of density and velocity
are correct and (ii) the density and velocity fluctuations are
uncorrelated, e.g., the autocorrelations of both are close to
the delta function within the noise level. The preservation
of correct fluctuations across the hybrid MD/FH zone has
been demonstrated in Fig. 15. Figs. 16(a) and 16(b) show
the corresponding autocorrelations of the density and x-
velocity component fluctuations of the MD part of the solution,
respectively, where the reference location x0 is taken at the
middle of the MD/FH hybrid zone which corresponds to
s = 0.5. Both autocorrelation functions abruptly decay for
non-zero spatial separations |δx | > 0. The noisy background

FIG. 16. Autocorrelations of (a) density and (b) x-velocity component for argon for the location x0 at the centre of the hybrid MD/LL-FH zone.
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of the autocorrelation functions is likely to be associated with
insufficient temporal averaging. Note that there was no spatial
averaging to compensate for the lack of the temporal statistics
convergence attempted to cosmetically reduce the noise.

To conclude this section, the present hybrid method is
probed for its ability to correctly transport acoustic wave
through the MD/LL-FH zone. The acoustic wave propagation
test is essential to show how well the hybrid scheme conserves
the momentum in unsteady flow.

For the test, the solution domain consisting of 20 × 5 × 5
cells (X × Y × Z) is selected which in total contains 32 000
argon atoms with a “pure” MD zone in the centre. The
MD zone is located in between the two LL-FH zones that
are put near the inlet and outlet sections of the solution
domain. A periodic acoustic wave solution is specified as
the inlet boundary condition of the solution domain so that
its wavelength is exactly equal to the length of the solution
domain in the x-direction and periodic boundary conditions for
particles still hold. The acoustic wave boundary condition was
implemented through adding the analytical source terms in the
governing LL-FH equations in the inlet boundary cells. The
source terms correspond to the time derivatives of density and
velocity of the incoming acoustic wave of a small amplitude
propagating over the prescribed constant mean flow field of
the LL-FH solution. The density fluctuation signal is computed
in the “probe” point located in the centre of the “pure” MD
region and compared with the analytical solution.

Fig. 17(a) compares the fluctuating density signal with the
analytical solution. Due to a very low acoustic signal to thermal
noise ratio (∼0.01), the original signal is completely masked
by the presence of thermal density fluctuations. However,
in accordance with the fluctuation dissipation theorem, the
thermal density fluctuations are uncorrelated, and after the
phase averaging as well as the additional spatial averaging in
the normal plane to the acoustic wave propagation (y-z), the
fluctuating density signal of the MD solution becomes very
close to the analytical solution specified (Fig. 17(b)). Notably,
the discrepancy between the computed density fluctuation in
the MD zone after the averaging and the analytical solution is
of the same order of magnitude as the noise level in the same
hybrid model without the acoustic wave.

C. Dialanine in water

The next step is to add a small peptide molecule, the
zwitterionic form of dialanine, into water. A single peptide
molecule is initially placed in the centre of the MD sphere (the
s = 0 region depicted in Fig. 1) and surrounded by our hybrid
SPC-E/hydrodynamic water model. The initial configuration
is depicted in Fig. 18.

The simulation is stopped when the macromolecule
reaches the hybrid MD/LL-FH zone, which is currently fixed
in space in accordance with (14). To prolong the simulation
time, in our future work, a non-stationary MD zone will be
considered by linking (14) to the movement of the centre of
mass of the peptide system so that the coupling parameter in
(9) becomes a function of space and time, s = s (x, y, z, t).

To check the influence of the hydrodynamics dominated
region (s > 0) on the MD region (s = 0), we have calculated

FIG. 17. Fluctuating density signal obtained in the MD part of the solution
domain vs the analytical solution (a) including the original MD signal with-
out phase and space averaging and (b) zoomed-in view with including the
reference phase and space averaged solution without the acoustic wave.

the translational self-diffusion coefficients D for both water
and peptide molecules in this region and compared them with
the ones obtained from a pure MD simulation. The Einstein
relation was used for calculating D: MSD(t) = 


∆r(t)2�
= A + 6Dt, where A is an arbitrary constant. Importantly, this
formula is correct only at long times (it is exact in the infinitely
long times). In practice, the part of the curve that can be
satisfactory approximated by a straight line should be taken
into account. In other words, it is the local slope of the Mean
Square Displacement (MSD) trajectory at long times which
should be considered and the initial fluctuations of MSD at
short times should be discarded when calculating D.

All simulations (pure and hybrid) have been carried
out at the same conditions: T = 298 K (Nose-Hoover ther-
mostat), constant density ρ = 999.15 g/cm3 for water and
992.92 g/cm3 for peptide solution, the MD time step∆t = 1 fs,
the reaction field electrostatics with cutoff length 0.9 nm and
dielectric constant 78, and van der Waals cutoff 0.9 nm.
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FIG. 18. Variable s parameter and MD sphere inside the computation box
with a small peptide molecule, the zwitterionic form of dialanine, at the centre
of the sphere. The red sphere is the pure MD region (s = 0) and blue is the
fluctuating hydrodynamics region (s = 1).

When evaluating D in the pure MD simulations, a 10 ns
long simulation of water and 40 ns long simulation of the
peptide solution were performed. The MSD(t) plots were
calculated for 1 ns intervals and then averaged (Fig. 19). The
obtained values of D are D(water) = 2.68 × 10−5 cm2/s and
D(protein) = 0.86 × 10−5 cm2/s.

However, evaluating D in the hybrid multiscale model
case is not straightforward because, unlike the single-scale
MD, the test molecule leaves the inner MD sphere beyond
which the hydrodynamics dominated region starts where the
individual molecule diffusion is not represented correctly.
Therefore, special measures have been taken to correctly
calculate the MSD. The former are not dissimilar to special
measures that need to be taken for the verification of
other multiscale algorithms that undergo several scales in
comparison with a single scale problem.63

As it takes a relatively short time for the molecule
to reach the hybrid zone, there is no reason to carry
out long simulations, and the typical algorithm, similar to
that mentioned above, becomes inappropriate. Therefore, we
proceeded by obtaining many short single molecule MSD(t)
plots and averaging them to accumulate a statistically sound

FIG. 19. The MSD(t) plot for the SPC/E water and the protein from a pure
MD simulation.

data. On the one hand, long trajectories are needed to satisfy
the long time limit condition of the Einstein relation and on
the other hand, the longer simulations are, the less molecules
remain in the s = 0 region. Therefore, it is necessary to (i) have
the molecules of interest in the centres of their boxes at the
beginning of the simulation and (ii) to exclude the molecules
that visited the region s > 0 from averaging the MSD(t) plots.

To satisfy these requirements, we used the following
algorithm:

1. Preparing the initial cells. During the initial equilibration,
the peptide molecule was fixed at the box centre by
applying restrains to the peptide bond carbon. In total, 70
cells with water and 182 cells with peptide solution were
prepared starting from different initial configurations.

2. Collecting data. Hybrid MD runs were 200 ps length.
Starting from 80 ps, every 20 ps frame was extracted for
further analysis. The MSD(t) plot was calculated for each
trajectory. In each pure water simulation, those molecules
that were already situated in the centre of the initial cell
were used (1–5 molecules/cell).

3. Filtering. By analysing the extracted frames, the trajec-
tories with the test molecules that visited the s > 0 region
were identified and excluded from the sampling set. The
filtration criterion was the distance between the geometrical
centre of the molecules and the cell centre. These should be
less than a cutoff radius Rc. We investigated several cutoff
radii Rc ranging from 1.3 to 2.9 nm.

4. Evaluating D. The obtained MSD(t) plots, Figs. 20 and
21, were averaged over the single molecule MSD(t) plots
obtained after filtering. Both water and peptide MSD(t)
plots are almost the same below some value of Rc (2.1 nm
for water and 1.5 nm for peptide) which suggests that
results are reasonably independent of Rc and further
reducing of the cutoff Rc is not needed. The fitting for
D was done at the intervals in the middle of the plots
(40–80 ps for water and 45–70 ns for peptide solution). The
part at small times does not satisfy the Einstein relation
requirement, while the ending parts are affected by the
closeness of the hybrid zone. The final D is calculated as

FIG. 20. The MSD(t) plots for water (hybrid MD) calculated with different
cutoff radii. The pure MD plot is given for comparison.
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FIG. 21. The MSD(t) plots for protein (hybrid MD) calculated with different
cutoff radii. The pure MD plot is given for comparison.

the average over the three smallest cutoff radii Rc (Tables II
and III).

The uncertainty of D was estimated as the sum of two
errors, which were assumed to be uncorrelated:

(1) In the whole fitting interval, the 20 ps (protein) or 15 ps
(water) sections were extracted with the 10 ps shift.
Several Di values were calculated from this sections by
fitting, and the half of the range between the smallest and
the biggest Di was taken as a slope uncertainty ∆Dsl.

(2) The dependence on Rc was accounted with cutoff uncer-
tainty ∆Dc, given by

∆Dc =
�����
∂D
∂Rc

�����
∆Rc ≈

�����
D(Rc2) − D(Rc1)

Rc2 − Rc1

�����
∆Rc,

where ∆Rc was taken to be 0.2 nm, so that the total
uncertainty is given by

∆D =

∆Dsl2 + ∆Dc

2.

The final diffusion coefficients D are listed in Table III.
Our hybrid method somewhat overestimates D for water
molecules and underestimates it for the peptide. With taking
into account the uncertainties, the discrepancy between the
hybrid model and the reference MD simulation is about 20%
for water and 30% for peptide, respectively. We attribute
this to the smallness of the MD zone where test molecules

TABLE II. The diffusion coefficient D obtained in hybrid simulations.

Rc, nm D, 10−5 cm2/s

Water
2.3 2.25
2.1 2.15
1.9 2.01

Protein
1.7 1.53
1.5 1.42
1.3 1.37

TABLE III. Final D values (the errors for the pure MD results are negligibly
small).

D,10−5 cm2/s

Pure MD Hybrid

Water 2.68 2.1 ± 0.12
Peptide 0.86 1.4 ± 0.16

are monitored and its closeness to the hybrid zone. The
first effect reduces the statistical sampling available for post-
processing to determine such a nonlocal quantity as the
molecular diffusion coefficient, while the second generates
artefact interactions between the test molecules in the MD
zone and the hydrodynamics dominated zone, as discussed in
Sec. III A. To alleviate these effects, a bigger MD zone and a
thicker hybrid zone will be implemented in our future work.

IV. CONCLUSION AND DISCUSSION

The following has been demonstrated:

(i) for constant s-parameter, the current 3D implementation
of the hybrid method correctly captures the macroscopic
fluctuations of density and velocity in accordance with
the literature;

(ii) for variable s-parameter, despite some sensitivity to the
size of the hybrid MD/LL-FH zone noted, the hybrid
method preserves important structure functions of liquids
such as the radial distribution function as well as the
velocity autocorrelation function in the atomistic part
of the solution; the change of the structure functions
is gradual under the effect of coarse graining when the
influence of hydrodynamics on MD is introduced;

(iii) it has been shown that the mass and momentum of the MD
part of the solution are preserved in the hybrid MD/LL-
FH zone within 0.5%;

(iv) the autocorrelations of density and velocity of the MD
part of the solution are correctly preserved in the hybrid
MD/LL-FH zone in accordance with the fluctuation
dissipation theorem;

(v) the results of the travelling acoustic wave through the
hybrid MD/LL-FH region have demonstrated the capa-
bility of the method to correctly transfer the momentum
in unsteady flow within the accuracy of statistical noise;

(vi) preliminary results of the hybrid method for water
molecular diffusion and the dialanine diffusion in water
show a reasonable agreement with the reference MD
simulation.

Further work will be devoted to implementing a larger
simulation box to reduce the sensitivity of the solution to
the size of the hybrid MD/LL-FH region. For example, this
might be achieved by introduction of gradually expanding
space-time scales into the simulation in order to obtain a
more gradual transition from the small atomistic scales to
the large hydrodynamic scales. The expansion of space-time
scales in the hybrid zone, from atomistic to hydrodynamic
scales where the MD particle would lose their mobility because
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of small thermal fluctuations in large cell volumes, is also
expected to constrain the location of the MD particles mainly
to the atomistic part of the solution domain. Constraining MD
particles to a small fraction of the hydrodynamic solution
domain is essential to further increase the computational
benefits of the hybrid method in comparison with the all-
atom simulation. Currently, the efficiency of the present model
implementation, which employs MD particles everywhere
including the hydrodynamics dominated zone, in comparison
with the all-atom simulation is just due to not computing the
molecular potentials in the hydrodynamics dominated part of
the solution domain. Additionally, the 3D implementation of
the two-way coupling scheme, including the feedback from
atomistic scales to hydrodynamics, as well as including the

energy conservation equation into the coupling framework,
which would be essential for nonzero flows such as shear and
non-isothermal processes, remains our further lines of work.
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APPENDIX: DERIVATION DETAILS OF THE HYBRID CONTINUUM/DISCRETE MODEL

Substituting the expressions for dxp
dt

and
dui p
dt

from (9) to (8) yields

δt
*.
,


p=1,N (t)

mp
+/
-
+


γ=1,6

*.
,


p=1,Nγ(t)

upρp
+/
-

dnγ · δt = −

γ=1,6

*.
,


p=1,Nγ(t)

s(ū − up)ρp
+/
-

dnγ · δt

−

λ=1,6

*.
,
s(1 − s) · α · 1

V


γ=1,6

*.
,
ρ̄ −


q=1,Nγ(t)

ρq
+/
-

dnγ+/
-

dnλ · δt (A1)

and

δt
*.
,


p=1,N (t)

mpui p
+/
-
+


γ=1,6

*.
,


p=1,Nγ(t)

upρpui p
+/
-

dnγ · δt =


p=1,N (t)
(1 − s)Fi p · δt

+

k=1,3


γ=1,6

*.
,
s(1 − s)β 1

V


λ=1,6

*.
,
ρ̄ · ūi −


q=1,Nλ(t)

ρquiq
+/
-

dnλ
k
+/
-

dnγ
k
δt

−

γ=1,6

*.
,


p=1,Nγ(t)

s(ū − up)ρpui p
+/
-

dnγδt, (A2)

respectively.
By subtracting the following true identities for density and momentum from Equations (A1) and (A2), respectively,

δt
*.
,
s


p=1,N (t)

mp
+/
-
+


γ=1,6

s *.
,


p=1,Nγ(t)

upρp
+/
-

dnγδt = δt
*.
,
s


p=1,N (t)

mp
+/
-
+


γ=1,6

s *.
,


p=1,Nγ(t)

upρp
+/
-

dnγδt (A3)

and

δt
*.
,
s


p=1,N (t)

mpui p
+/
-
+


γ=1,6

s *.
,


p=1,Nγ(t)

upρpui p
+/
-

dnγδt = δt
*.
,
s


p=1,N (t)

mpui p
+/
-
+


γ=1,6

s *.
,


p=1,Nγ(t)

upρpui p
+/
-

dnγδt,

(A4)
the following equations are obtained:

δt
*.
,
(1 − s)


p=1,N (t)

mp
+/
-
+


γ=1,6

(1 − s) *.
,


p=1,Nγ(t)

upρp
+/
-

dnγδt

= −δt *.
,
s


p=1,N (t)

mp
+/
-
−


γ=1,6

*.
,


p=1,Nγ(t)

sūρp
+/
-

dnγδt −

λ=1,6

*.
,
s(1 − s) · α · 1

V


γ=1,6

*.
,
ρ̄ −


q=1,Nγ(t)

ρq
+/
-

dnγ+/
-

dnλδt

(A5)
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and

δt
*.
,
(1 − s)


p=1,N (t)

mpui p
+/
-
+


γ=1,6

(1 − s) *.
,


p=1,Nγ(t)

upρpui p
+/
-

dnγδt −


p=1,N (t)
(1 − s)Fi p δt

= −δt *.
,
s


p=1,N (t)

mpui p
+/
-
−


γ=1,6

*.
,


p=1,Nγ(t)

sūρpui p
+/
-

dnγδt

+

k=1,3


γ=1,6

*.
,
s(1 − s) · β · 1

V


λ=1,6

*.
,
ρ̄ · ūi −


q=1,Nγ(t)

ρquiq
+/
-

dnλ
k
+/
-

dnγ
k
δt . (A6)

Comparison of (A5) and (A6) with (2) and (4), respectively, gives

δt J(ρ) = δt
*.
,
s


p=1,N (t)

mp
+/
-
+


γ=1,6

*.
,


p=1,Nγ(t)

sūρp
+/
-

dnγ · δt +

λ=1,6

*.
,
s(1 − s) · α · 1

V


γ=1,6

*.
,
ρ̄ −


q=1,Nγ(t)

ρq
+/
-

dnγ+/
-

dnλδt

(A7)

and

δt J
(u)
i = δt

*.
,
s


p=1,N (t)

mpui p
+/
-
+


γ=1,6

*.
,


p=1,Nγ(t)

sūρpui p
+/
-

dnγδt

−

k=1,3


γ=1,6

*.
,
s(1 − s) · β · 1

V


λ=1,6

*.
,
ρ̄ · ūi −


q=1,Nγ(t)

ρquiq
+/
-

dnλ
k
+/
-

dnγ
k
δt . (A8)

By substituting above expressions (A7) and (A8) into continuum “phase” Equations (1) and (3), summing up the results for
the mass

δt(sm) +

γ=1,6

(sρū) dnγδt = δt
*.
,
s


p=1,N (t)

mp
+/
-
+


γ=1,6

*.
,


p=1,Nγ(t)

sūρp
+/
-

dnγδt

+

λ=1,6

*.
,
s(1 − s) · α · 1

V


γ=1,6

*.
,
ρ̄ −


q=1,Nγ(t)

ρq
+/
-

dnγ+/
-

dnλδt (A9)

and momentum,

δt(smui) +

γ=1,6

(sρuiū) dnγδt = δt
*.
,
s


p=1,N (t)

mpui p
+/
-
+


γ=1,6

*.
,


p=1,Nγ(t)

sūρpui p
+/
-

dnγδt + s

j=1,3


γ=1,6

�
Πi j + Π̃i j

�
dnγj δt

−

k=1,3


γ=1,6

*.
,
s(1 − s) · β · 1

V


λ=1,6

*.
,
ρ̄ · ūi −


q=1,Nγ(t)

ρquiq
+/
-

dnλ
k
+/
-

dnγ
k
δt (A10)

with the following true identities:

δt
*.
,
(1 − s)


p=1,N (t)

mp
+/
-
+


γ=1,6

(1 − s) *.
,


p=1,Nγ(t)

ūρp
+/
-

dnγδt = δt
*.
,
(1 − s)


p=1,N (t)

mp
+/
-
+


γ=1,6

(1 − s) *.
,


p=1,Nγ(t)

ūρp
+/
-

dnγδt

(A11)

and

δt
*.
,
(1 − s)


p=1,N (t)

mpui p
+/
-
+


γ=1,6

(1 − s) *.
,


p=1,Nλ(t)

sūρpui p
+/
-

dnγδt

= δt
*.
,
(1 − s)


p=1,N (t)

mpui p
+/
-
+


γ=1,6

(1 − s) *.
,


p=1,Nγ(t)

sūρpui p
+/
-

dnγδt, (A12)

respectively, and using the mixture density and momentum variables, ρ̄ = sρ + (1 − s) 
p=1,N (t)

ρp and m̄ūi = smui + (1
− s) 

p=1,N (t)
mpui p, respectively, finally yields
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δt
*.
,
m̄ −


p=1,N (t)

mp
+/
-
+


γ=1,6

ū *.
,
ρ̄ −


q=1,Nγ(t)

ρq
+/
-

dnγδt = −

λ=1,6

*.
,
s(1 − s) · α · 1

V


γ=1,6

*.
,
ρ̄ −


q=1,Nγ(t)

ρq
+/
-

dnγ+/
-

dnλδt
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and

δt(m̄ · ūi −


p=1,N (t)
mpui p) +


γ=1,6

sū *.
,
ρ̄ · ūi −


p=1,Nγ(t)

ρpui p
+/
-

dnγδt

= s

j=1,3


γ=1,6

�
Πi j + Π̃i j

�
dnγj δt −


k=1,3


γ=1,6

*.
,
s(1 − s) · β · 1

V


λ=1,6

*.
,
ρ̄ · ūi −


q=1,Nλ(t)

ρquiq
+/
-

dnλ
k
+/
-

dnγ
k
δt . (A14)

Resulting Equations (A13) and (A14) are identical to (5)–(7).
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