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a b s t r a c t

Graphene based nanomaterials (GBN) have been recently applied in a broad range of science and technol-
ogy fields such as nanobiomedicine, electronics, energy storage and power generation exploiting their
unique electronic structure, physical properties, and opportunities for modifying their surface using cova-
lent and non-covalent interactions. In the present review we systematised the origins of GBN function-
alisation using organic and inorganic molecules, polymers, biomolecules, and anticancer drugs. We
show that varying the procedure of GBN functionalisation allows to obtain nanomaterials with desired
properties that can be applied to the development of materials with enhanced physicochemical proper-
ties, nanoplatforms for drug delivery, nanobiosensors for detection of various biomolecules, as well as
nanomaterials for bioimaging and diagnostics. The review can be useful for experts in the fields of mate-
rial science and nanobiomedicine.

� 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Graphene based nanomaterials (GBN) such as graphene oxide
(GO), graphene, and reduced graphene oxide (rGO) have been at
the forefront of research due to their unique structure and distin-
guished physico-chemical properties (Table 1). One of the most
important application of GBN is biomedicine: tissue engineering
[1], bioimaging [2,3] targeted anticancer drug delivery [4-9],
biosensors [10-12], development of antiviral [13-16], antibacterial
[17-20], antifungal materials [21,22], as well as the delivery of bio-
molecules such as enzymes [23,24], proteins [25-27], genes [28-
30], RNA [31,32], and DNA [33,34]. In addition, GBN were used as
materials for energy applications (fuel cells [35,36], batteries
[37,38], solar cells [39,40]), for manufacturing smart materials
[41], nano-enhancers to design heat transfer media with better
thermal performance [42-44] and for water disinfection and
desalination [45-47]. Fig. 1 summarises the publications distribu-
tion in these research areas.

GBN can be functionalised through covalent [48-52] and non-
covalent [53-57] interactions. Functionalisation of GBN leads to
the enhancement of their electrical [58,59], optical [60,61], thermal
[62,63], electronic [64-66], and mechanical [67,68] properties. Gra-
phene is a monolayer carbonaceous material [69] that can be pre-
pared in the form of single or multilayered flakes depending on the
method of preparation [70]. It can be synthesised using various
methods such as chemical vapour deposition (CVD) [71-77], elec-
trochemical exfoliation of graphite [78-83], mechanochemical
exfoliation of graphite [84] as well as chemical and thermal reduc-
tion of GO resulting in the formation of rGO [85-91].
-chemical properties of GBN.

erties Graphene rGO

hanical
roperties

Stiffness: 340 N∙m�1 [215];
Young’s modulus: 1.0 ± 0.1TPa [215];
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Graphene is composed of sp2-hybridised hexagonal carbon
atoms forming two-dimensional nanolayers, while GO contains
various oxygen functional groups distributed on the surface such
as carboxyl, carbonyl, and lactol at the edges of GO layers in addi-
tion to epoxy and hydroxyl groups on the basal plane [92-97],
(Fig. 2). rGO is a form of GO in which most of the oxygen-
containing functional groups are reduced by such agents as hydra-
zine hydrate or biomolecules [98,99].

A single layer of graphene was isolated in 2004 by Andrei Geim
and Konstantin Novoselv [100], while GO was synthesised for the
first time in 1859 by Benjamin Brody by oxidising graphite using
a mixture of oxidising agents potassium chlorate and fuming nitric
acid [101]. However, the most efficient method was developed by
William Hummers and Richard Offeman in 1957 using the oxidis-
ing mixture of sulphuric acid, sodium nitrate, and potassium per-
manganate [102].

This review summarises approaches for the covalent and non-
covalent functionalisation of GBN. Due to multifunctional groups
located on the GO surface as well as the presense of sp2-
hybridised carbon atoms, further functionalisation of GBN can be
conducted with the molecules of various nature. A multitude of
organic reactions (Fig. 3) can be carried out: amidation, esterifica-
tion, 1,3-dipolarcycloaddition, halogenations, as well as hydrogen
bonding, p–p stacking interactions, and hydrophobic interactions.

These reactions allow to obtain unique materials for biomedical
applications, such as cancer treatment [103], drug and biomole-
cules delivery [104,105], development of biosensors [106] and
materials with antiviral [107], antibacterial [108], and antifungal
properties [109]. This review demonstrates that among GBN, GO
GO

22.4 N∙m�1[216];
odulus: 0.25 ± 0.15 TPa [217];
293.3 MPa [218].

Stiffness: 145.3 N∙m�1 [219];
Young’s modulus: 207.6 ± 23.4 GPa
[219];
strength: 17.3 N∙m�1 (24.7 GPa) [220].

conductivity: 3032.6–4006 S∙m�1

obility: 26 cm2 V�1 s�1 [224];
stance: 1.6 KX /sq at 85% transparency

Electrical conductivity: 1.34∙10-5 S∙m�1

[226];
electron mobility: 2–200 cm2 V�1 s�1

[227];
sheet resistance: 276–2024 X/sq at
23–77% transparency [228].

onductivity: 1.3 W∙m�1∙K�1[230]. Thermal conductivity: 8.8 W∙m�1∙K�1

[231].
ine [235], energy [236], electronics
ocomposites [234], nanosensors [238].

Biomedicine [157], energy [239],
nanocomposites [234], nanosensors
[240].



Fig. 1. Publication distribution of GBN applications in various research areas.

Fig. 2. GO structure.
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has the highest potential for the applications in nanomedicine due
to the following reasons. (i) GO consists of various functional
groups which allow to perform further functionalisation of the sur-
face. (ii) The functionalisation of GO increases its biocompatibility.
(iii) The presence of oxygen-containing functional groups provides
the stability of GO aqueous dispersions.
2. Functionalisation of GBN

2.1. Graphene conjugation with organic molecules

Graphene structure can be covalently or non-covalently func-
tionalised with organic molecules using amidation, esterification,
and halogenation reactions. Hossain et al. [110] studied the diazo-
tisation of graphene obtained by epitaxial growth method (G-
3

epitaxial) on SiC. The authors demonstrated that the basal plane
of graphene can be functionalised with such organic molecule as
2-aminoethanethiol (HS-C2H4-NH2) using diazotisation reaction.
In addition, it was found that amine diazonium salts undergo spon-
taneous reduction resulting in functionalisation of the graphene
surface with HS-C2H4 residues leading to G-thioethyl (GT). In their
further work [111] Hossain et al. performed the covalent immobil-
isation of AuNPs on the surface of GT. The � SH-groups of GT were
treated with HAuCl4 with subsequent reduction by NaBH4. Thus,
Au was covalently attached to graphene through � S � Au bond.
Then, the immobilised AuNPs were modified with such sulphur-
containing molecules as hexanedithiol (HSC6H12SH). The resulting
assembly with graphene can be used for loading various sulphur-
containing biomolecules through the formation of an Au-S linkage
(Fig. 4).

Wang et al. [112] developed a covalent functionalisation with 3-
aminopropyltriethoxysilane (APTS) through the hydroxyl groups
on the graphene surface using DCC as a catalyst (Fig. 5). De Sousa
et al. [113] presented the covalent functionalisation of GO with
mannosylated ethylenediamine, the reaction proceeded through
EDC/NHS coupling (Fig. 6). Shang et al. reported that GO was cova-
lently functionalised with N-heterocyclic carbene–palladium com-
plex (NHC-Pd2+) for the application as an efficient catalyst for
Suzuki–Miyaura coupling reactions [114].

Qian et al. presented the procedures of covalent functionalisa-
tion for graphene quantum dots where graphene surface was func-
tionalised with organic molecules including dialcohols, diamines,
and dithiols for bioimaging applications [115]. Yu et al. performed
DFT study of non-covalent interaction between graphene and some
aromatic molecules including thiophene (T), benzene (B) and pyr-
idine (P). According to the study the aromatic rings of these mole-
cules were placed on the top of the graphene surface at the height
of 0.35 nm in parallel or vertical orientation. The results demon-
strated that the interaction between the two polar molecules (T,
P) and graphene is weaker than that of the nonpolar molecule
(B). In addition, the non-covalent interactions between the aro-
matic molecules and graphene surface mainly originates from the
p–p stacking between the p electrons of aromatic compound and
graphene [116].



Fig. 3. Scheme showing various kinds of reactions that can happen on the graphene surface.
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2.2. Graphene conjugation with inorganic molecules

Graphene surface can be functionalised with inorganic mole-
cules including metal and metal oxide nanoparticles. Poh et al.
[117] developed a method of graphene’s halogenation (Fig. 7)
through the covalent attachment of chlorine, bromine, or iodine.
In this method graphite oxide (GrO) was prepared from graphite
by oxidation followed by the thermal exfoliation of GrO with the
formation of rGO (TRGO(.The obtained nanomaterials can be used
in the development of electronic and electrochemical devices.

Lai et al. [118] presented the synthesis of brominated graphene
via electrophilic substitution reaction using N-bromosuccinimide
(NBS) in aqueous solution of sulfuric acid to stimulate the decom-
position of NBS and facilitate the formation of bromine cations.
Then, these cations acted as electrophiles and covalently bonded
to the defect sites of rGO (mostly sp2 C–H) located at the edges
of graphene flakes. The authors introduced a reaction mechanism
based on the electron exchange reaction. It is well known that car-
bon atoms of the rGO lattice are electron-rich due to sp2 -
hybridisation and they possess negative partial charge while bro-
mine cations are electron-deficient and therefore possess partial
positive charge. Thus, the generated bromine cations could be
covalently attached to the defects of rGO (Fig. 8).

Dong et al. demonstrated the possibility of the reaction between
GO and FeCl3 [119]. Coordination bonds were formed between Fe3+

and hydroxyl groups of GO at the edges of the flake (Fig. 9). Liter-
4

ature analysis shows that GBN were non-covalently functionalised
with metal nanoparticles for biosensing and antibacterial applica-
tions, for instance, silver nanoparticles (AgNp) [45,120-127], gold
nanoparticles (AuNp) [128-135], and platinum nanoparticles
(PtNp) [136-141]. In addition, the non-covalent functionalisation
of GBN with metal oxide nanoparticles (ZnO [142-145], CuO
[146,147] allows to obtain nanomaterials for the development of
antimicrobial pharmaceutics and biochemical sensors for single
stranded RNA detection. At the same time, covalent and non-
covalent functionalisation of GBN with Fe3O4 magnetic nanoparti-
cles allow to obtain nanomaterials for drug delivery and cancer
sensing [148-153] (see Table 2).

2.3. Graphene conjugation with polymers

Graphene and GO can be functionalised with various polymers
through covalent [154] and non-covalent interactions [55]. The
obtained nanomaterials can be used in energy applications, cataly-
sis, and biomedicine [155-157]. Fang et al. [154] performed the
covalent functionalisation of graphene nanosheets with linear
polystyrene (PS, M = 60 kDa) for preparing nanocomposites with
enhanced mechanical properties (increased tensile strength and
Young’s modulus by 70% and 57% in comparison with individual
PS). At first, the authors prepared GO using modified Hummers
and Offeman’s method then reduced it using hydrazine hydrate
to rGO sheets. Then, hydroxylated graphene (G-OH) was synthe-



Fig. 4. Schematic of the reaction mechanism for spontaneous reduction of thioethyldiazonium (HS-C2H4NN+) ions on graphene surface with subsequent covalent
immobilisation of AuNPs on graphene followed by the reaction with dithiol molecules [111].

Fig. 5. Functionalisation of hydroxyl groups of GO with APTS through covalent bonding [112].
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sised via diazonium addition reaction in the presence of 2-(4-
aminophenyl) ethanol and isoamyl nitrite. The obtained G-OH
was treated with triethanolamine and 2-bromopropionyl bromide
to prepare graphene-based initiator. Finally styrene was added to
the graphene-based initiator in the presence of methyl-2-
bromopropionate (MBP), CuBr and N,N,N/,N/,N//-pentamethyl-
5

diethylenetriamine (PMDETA) to synthesise polystyrene covalently
functionalised with graphene nanosheets (Fig. 10).

Cano et al. [158] demonstrated the possibility of covalent func-
tionalisation of GO with poly(vinyl alcohol) (PVA) for enhancing
the mechanical properties of PVA. As a result, the authors demon-
strated 60% improved Young’s moduli and 400% tensile strength



Fig. 6. Covalent functionalisation of GO with mannosylated ethylenediamine (in red) through EDC / NHS coupling [113].

Fig. 7. Synthesis of halogenated graphene by thermal exfoliation of graphite oxide in a halogen atmosphere [117].
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Fig. 8. Proposed mechanism of the bromination of RGO using NBS through electrophilic substitution reaction [118]

Fig. 9. Schematic illustration of the formation of GO–Fe complexes through oxygen-donor coordination of GO to ferric ions [119].
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compared to non-modified PVA. The authors performed carbodi-
imide coupling of GO with (PVA, M = 6–500 kDa) using N,Nˈ-dicy
clohexylcarbodiimide (DCC) and 4-dimethylaminopyridine
(DMAP) to produce GO-PVA conjugate (Fig. 11). Wan et al. [159]
performed the covalent functionalisation of GO surface with digly-
cidyl ether of bisphenol-A (DGEBA) (Fig. 12), resulting in the for-
mation of (DGEBA–GO) polymers with improved thermal
stability and mechanical properties such as enhanced tensile
strength (61–75% increase) and fracture toughness (29–41%
increase) compared to non-modified DGEBA.

Xu et al. [160] demonstrated the covalent functionalisation of
GO with 6-armed PEG-NH2. At first the authors converted 6-
armed PEG � OH to 6-armed PEG with six amino end groups (6-
7

armed PEG-NH2) according to the protocol applied by Mei et al.
[161] with subsequent covalent functionalisation of GO surface
by 6-armed PEG-NH2 through amidation reaction using EDC�HCl
as a coupling agent. The obtained nanomaterial GO-PEG-NH2 was
applied as a drug delivery system for paclitaxel (PTX). The cyto-
static was attached by non-covalent functionalisation through
p � p stacking and hydrophobic interactions (Fig. 13). In addition
to these covalent conjugates, GBN was applied as additives to var-
ious nanocomposite materials.

Yu et al. performed the modification of polystyrene (PS) with
2 wt% GO and obtained materials with superior anti-corrosion
properties (protection efficiency against corrosion increased from
37.90% to 99.53% in comparison to PS), increased thermal stability



Table 2
Applications, properties and description of key results of nanocomposite materials.

GBN-nanocomposite type and composition
information

Application Key results and description Reference

GO- AgNp
Characteristics of nanocomposite:
-GO thickness: 0.7–1.2 nm;
-distribution size: 300–800 nm.
-AgNps size: 7.5 nm.

Antibacterial agent.
Antibacterial coatings for
preventing growth of bacteria on
medical devices.

Inhibitory concentration of GO-AgNp towards
Pseudomonas aeruginosa is 2.5 mg∙ml�1 with 100%
inhibition rate after 1 h. In the case of GO the authors did
not observe antibacterial activity.
Role of GO: (i) stabilizing agent preventing
agglomeration of AgNp; (ii) increasing of surface area of
AgNps.

[120]

GO-TETA-AgNps
Characteristics of nanocomposite:
-GO covalently functionalised with N-
(trimethoxysilylpropyl) ethylenediaminetriacetic
acid trisodium salt (TETA) and AgNps (30–50 nm);
-stable aqueous dispersion at C (GO-TETA-
AgNps) = 0.5 mg∙ml�1.
-uniform distribution of AgNps on graphene surface
(according to SEM).

Sensors for organic molecules (p -
aminothiophenol and melamine).
Antibacterial agents.

Detection limit for p-aminothiophenol- 2∙10-8 M and
melamine- 2∙10-7 M.
Inhibition effect (100%) against the growth of Escherichia
coli (E. coli) at C (GO-TETA-Ag) = 100 mg∙ml�1.

[123]

rGO-PDA-AgNps
Characteristics of nanocomposite:
-rGO modified with polydopamine-AgNps;
-heterogeneous distribution of AgNps on graphene
surface with non-uniform sizes leading to increasing
immobilization of the target molecules.

DNA biosensors. Detection limit of 3.2∙10�15 M.
Application of rGO allows to increase electrode active
area and enhance detection signal.

[126]

rGO-1,6 diaminohexane- AgNp.
Characteristics of nanocomposite:
-rGO noncovalently functionalised with 1,6
diaminohexane- AgNp (by hydrogen bonding,
electrostatic interactions);
-using of single layers of graphene sheets (according
to HRTEM) leads to homogeneous distribution of
AgNps.

Antibacterial activity, water
disinfection.

Disinfecting water against total and fecal coliform
bacteria at C = 1 mg∙ml�1 with 100 % inhibition rate.

[45]

rGO-AuNps-PNA
Characteristics of nanocomposite:
-rGO noncovalently modified with AuNps which in
turn covalently functionalised with peptide nucleic
acid probe (PNA);
-the sequence of the PNA probe is N-
AACCACACAACCTACTACCTCA-C;
-rGO thickness: 1.6 nm;
-particle size of AuNps: 10 nm.

Biosensors for miRNA. Detection limit up to 1∙10-14 M. In the absence of AuNps
detection limit is equal to 1∙10-13M.

[241]

rGO-AuNps-TGA
Characteristics of nanocomposite:
-noncovalently functionalised rGO with AuNps
followed by covalent functionalisation with
thioglycolic acid (TGA);
-homogenious distribution of AuNps (5 nm) on rGO
surface without agglomerations.

Sensors for detection of mercury
(II) ions.

Detection limit up to 2.5∙10-8 M. [130]

rGO-PtNps
Characteristics of nanocomposite:
-superior dispersion of PtNps on rGO surface;
-small particle size of rGO-PtNps: 1.9 nm;
surface area: 138 m2∙g;
PtNps loading: 0.25 mg cm�2.

Fuel cells. High fuel cell performance of rGO-PtNps with maximum
power output of 320 mW∙cm�2 (40% higher than for
carbon black (Vulcan XC-72) modified with PtNps (Pt-
VC)).
The high fuel cell performance using low loading of
PtNps (0.25 mg cm�2) in comparison to higher Pt loading
used in standard fuel cell electrodes (0.5 mg cm�2).
High fuel cell performance is referred to high catalytic
activity due to high electrochemical surface area and
small PtNps size.

[139]

rGO-T-Pt
Characteristics of nanocomposite:
- rGO-taurine-PtNp;
-rGO modified with taurine and PtNps;
-thickness of rGO-T is 1.2 nmwith lateral dimensions
of several micrometers;
-loading of Pt up to 80 wt%.

Electrocatalyst for methanol
oxidation.
Fuel cells.

Higher electrocatalytic activity than Pt-VC and Pt-rGO
catalysts.
Electrode charge transfer resistance Rct = 158, 185 and
203 X for rGO-T-Pt, rGO-Pt and Pt-VC, respectively.
Catalytic enhancement mechanism of rGO-T-Pt: (i)
presence of SO3H- groups due to functionalisation of rGO
with taurine molecules;
(ii) uniform and symmetrical distribution of PtNps with
particle size of 3.8 nm on rGO –T surface;
(iii) enhanced charge transfer ability.

[141]

rGO-ZnO
Characteristics of nanocomposite:
-ZnO particle diameter: 20 ± 2 nm;
-lateral size dimensions of rGO sheets range from
few nanometers up to some tens of micrometers.

Sensors for NO2. rGO-ZnO sensor has higher response than ZnO sensor
toward NO2 gas at 200 0C and 250 0C.
Response of the sensor rGO-ZnO to NO2 gas at C
(NO2) = 5 ppm is 1.4 times higher than that of pure ZnO
sensor.

[143]
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Table 2 (continued)

GBN-nanocomposite type and composition
information

Application Key results and description Reference

G-ZnO-PSE-ssDNA
Characteristics of nanocomposite:
-graphene-ZnO -single stranded DNA;
-noncovalent composite of graphene (G)-ZnO- 1-
pyrenebutyric acid N-hydroxysuccinimide ester
(PSE) that was covalently functionalised with amino
modified ssDNA probe;
-ssDNA probe was used to hybridize with ssRNA
target for detection.

Genosensors for ss RNA detection. Detection limit is 4.3∙10-12 M due to high conductivity of
G-ZnO (Rct = 1241.3 X.), large specific area and catalytic
properties.

[142]

GO- CuO
Characteristics of nanocomposite:
-CuO loading: 40%;
-thickness of GO layers is 12 nm;
-thickness of GO-CuO layers is 13 nm;
-particle size of CuO is190 nm.

Antibacterial agent. Inhibiting the growth of E. coli and S. typhimurium
bacteria in the concentration range 1–3 mg∙ml�1,
toxicicty for both bacteria after 3 h is 98% at C (GO-
CuO) = 3 mg∙ml�1.
Mechanism of antibacterial activity: (i) cellular uptake,
(ii) generation of reactive oxygen species.

[147]

GO-CuO
Characteristics of nanocomposite:
-agglomerated CuO nanoparticles with spherical
morphology.

Anticancer activity.
Photocatalyst for dye degradation.

Cytotoxic activity (70%) against Human colon cancer cell
line (HCT-116) at 100 lg∙ml�1.
GO-CuO led to 83.20 % degradation of methylene blue
dye solution when exposed to visible light for 60 min
(due to generation of �OH and �O2

- radicals that oxidize
methylene blue).

[242]

rGO-Fe3O4

Characteristics of nanocomposite:
-Fe3O4 particle size: 6 ± 3 nm;
-superparamagnetic properties: saturation
magnetisation (Ms = 20.1 emu∙g�1) and coercivity
(Hc = 6.25 Oe).

Anticancer agents.
Antibacterial agents.

Anticancer activity: cytotoxicity of rGO-Fe3O4 against
erythromyeloblastoid leukemia (K562), prostate
carcinoma (PC-3), epidermoid carcinoma (A-431), ER+

breast carcinoma (MDA-MB-231), colon carcinoma
(COLO-205), ER1 breast adenocarcinoma (MCF-7), and
lung carcinoma (A-549) cell lines at C (rGO-
Fe3O4) = 50 mg∙ml�1 is equal to 20–40% depending on cell
line
Antibacterial activity: minimum inhibitory
concentration of rGO-Fe3O4 = 1000 mg∙ml�1 against
Gram-positive bacteria, (Staphylococcus aureus, Bacillus
subtilis, Streptococcus mutans, and Enterococcus faecalis)
and Gram-negative bacteria (Salmonella typhi and
E. coli).

[149]

GO–APTES-Fe3O4 -DOX
Characteristics of nanocomposite:
-GO covalently functionalised with 3–
aminopropyltriethoxysilane (APTES) and
noncovalently with Fe3O4 and DOX;
-particle size of GO-Fe3O4-APTES: 260 nm.

Targeted drug delivery. Dual in-
vitro fluorescence and in-vivo
magnetic resonance imaging.
Cancer sensing.

Targeted delivery of DOX with loading capacity of 0.2 mg
of DOX per 1 mg GO-Fe3O4-APTES (20 wt% loading).
DOX- GO-Fe3O4-APTES led to 2.5 fold higher efficacy of
cytotoxicicty (62%) against HeLa cells than free DOX
(reducing the required dose of DOX by 8 times to have
the same value of cytotoxicity).
The intensity ratio of emission spectra of GO-Fe3O4-
APTES in red (635 nm) and green (535 nm) for cancer
(HeLa and MCF-7) and healthy cell line (HEK-293)
depends on the type of cell line and its pH value in the
cell microenvironment.

[153]
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(from 73 for PS to 372 �C for GO-PS) and enhanced mechanical
properties (the storage modulus increased from 1808.76 MPa for
PS to 2802.36 MPa for GO-PS) [162]. Deshmukh et al. carried out
the synthesis of a nanocomposite based on polyvinylchloride
(PVC) modified with GO (the quantity of GO varied from 0.5 to
2.5 wt%). It was demonstrated that the incorporation of GO to
PVC leads to decrease in surface roughness through improving
the values of contact angle [163]. Ovcharenko et al. demonstrated
that GO-poly(carbonate-urea)urethane nanocomposite can be
applied in the development of artificial heart valves due to its
superior mechanical properties, hemocompatibility, and calcific
resistance of nanocomposites [164]. Kumar et al. revealed that
the nanocomposite based on sulfonated GO and sulfonated poly-
ether ether ketone (SGO-SPEEK) demonstrated high proton con-
ductivity of 0.055 S cm -1 at 80 �C and 30% RH compared to the
non-modified SPEEK (0.015 S cm -1). Thus, the obtained nanomate-
rial can be used for the development of fuel cells [165].
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2.4. Graphene conjugation with anticancer drugs

Literature shows that GBN was conjugated with anticancer
drugs through noncovalent interaction of the drug with graphene
surface. Zhang et al. [166] reported that covalent functionalisation
of GO with sulfonic acid groups and folic acid (GO-SO3H-FA)
allowed to increase the specificity towards MCF-7 cells (human
breast cancer cell line). Addition of anticancer drugs (doxorubicine
(DOX) and camptothecin (CPT)) through non-covalent functionali-
sation (due to p–p stacking and hydrophobic interactions between
the drugs and the GO surface) significantly increase the therapeutic
efficacy in comparison with individual drugs. The amount of CPT
and DOX on GO-SO3H-FA-CPT-DOX was calculated to be 4.5 %
and 400% respectively.

Wang et al. [104] demonstrated that the covalent functionalisa-
tion of GO with chlorotoxin (CTX) increases the drug delivery to C6
glioma cells. At the same time, non-covalent attachment of DOX
with the capacity of 570 mg DOX per gram CTX-GO significantly
increases the efficiency of the conjugate (the release of the drug
was pH dependent). Fan et al. [167] synthesised covalent conjugate
based on GO with adipic acid dihydrazide and sodium alginate



Fig. 10. Synthesis route of polystyrene-functionalised graphene nanosheets [154].

Fig. 11. Functionalisation of GO with poly(vinyl alcohol) by a carbodiimide esterification reaction [158].
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(SA). Then, DOX∙HCl was non-covalently attached to GO-SA, the
maximum capacity of DOX on GO–SA was 1.8 mg/mg GO-SA with
the best drug release rate at pH 5.0. The cytotoxicity measure-
ments demonstrated that GO–SA conjugate did not bear toxicity
while GO–SA/DOX showed cytotoxicity towards HeLa (human cer-
vical carcinoma cell line) through specific targeting of CD44
receptors.

Qin et al. [168] prepared GO non-covalently conjugated with
polyvinylpyrrolidone (PVP, M = 30 kDa) and then folic acid (FA)
was covalently attached to COOH groups of GO through amide
bond formation followed by the non-covalent attachment of DOX
to the surface of FA–GO–PVP (through p–p stacking and hydropho-
bic interactions). The load ratio of DOX on FA–GO–PVP was calcu-
lated to be 107.5 wt%. The obtained conjugate demonstrated high
10
anticancer efficacy on HeLa cells. Huang et al. [169] described the
ability of GO functionalised with FA to efficiently load chlorin e6
photosensitiser for targeted photodynamic therapy. Tiwari et al.
[170] used GO-PVP non-covalent conjugate for the dual non-
covalent attachment of quercetin (QS) and gefitinib (GF) and com-
pared it with the GO-PVP-QS and GO-PVP-GF conjugates. The
authors found that the combined drug loading had high cytotoxic-
ity against PA-1 cells (ovarian cancer cell line) compared with the
individual drugs and the free drugs. The amount of QS and GF in
GO-PVP-QS-GF was equal to 20 and 46% respectively.

GO was functionalised with polyethylene glycol, FA, and CPT by
non-covalent p–p stacking interactions (CPT percentage was 45%)
and achieved 76% cytotoxicity towards MCF-7 (breast cancer cell
line) at the highest applied concentration (100 lg�ml�1) [171]. In



Fig. 12. Covalent functionalisation of GO with DGEBA [159].

Fig. 13. Covalent functionalisation of GO with 6-armed PEG-NH2 through amidation reaction [160].
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addition, magnetic GO surface was grafted by b-cyclodextrin (b-CD,
M = 1.1 kDa) for the delivery of DOX and methotrexate (MTX). The
cytotoxicity results on K562 cells (leukemia cell line) showed
11
decreasing cell viability by 65% and 55% at the concentration of
16 lg�ml�1 for GO-Fe3O4-b-CD-DOX (37.4% of DOX) and GO-
Fe3O4-b-CD-MTX (23.4 % of MTX), respectively [172].
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GO was functionalised with natural polymer chitosan (CS) and
FA for the delivery of CPT and 3,30–diindolylmethane (DIM). The
obtained conjugate (GO-CS-FA-CPT-DIM) demonstrated increased
cytotoxicity against MCF-7 cell line using MTT assay (95.67 %
decrease of the cell viability) that was significantly higher in com-
parison with the pure drugs DIM (42.4 %) and CPT (52.59 %) [173].
Pei et al. revealed that the simultaneous attachment of Pt and DOX
to GO surface functionalized with PEG (pGO) (pGO-Pt-DOX, weight
ratio: 1:0.376:0.376) leads to enhanced cytotoxicity against both
Cal-27 (human squamous cell carcinoma cell line) and MCF-7
(breast cancer cell line). The authors observed a higher inhibition
rate for the pGO-CP-DOX conjugate in comparison with individual
drugs: IC50 (MCF-7) = 14.5 lg�ml�1 for pGO-Pt-DOX, 22.5 lg�ml�1
Table 3
Cytotoxicity of conjugates based on GBN and non-covalently attached anticancer drugs ev

Type of GBN Drug load Cell lines or t

GO-sulphonic acid groups-
folic acid
(GO-SO3H-FA);
GO-FA

Loading of a dual drug: camptothecin
(CPT) (4.5 %) and Dox (400%).

MCF-7 cells (h
adenocarcinom

GO- chlorotoxin
(GO-CTX)

Loading of DOX
570 mg DOX per gm GO-CTX.

C6 (glioma cel

GO-sodium alginate (GO-
SA)

Loading of DOX 1.8 mg/mg. HeLa cells

GONP with dimensions of
50 � 50 nm2

Cisplatin (CP) loading was not
determined.

A549 (human
line)

GO-polyethylene glycol-
folic acid (GO-PEG-FA)

Camptothecin (CPT)
loading 45%.

MCF-7 (breast

GO-Fe3O4-b-cyclodextrin DOX loading 37.4 %
MTX loading 23.4 %

K562 cells (leu

GO-PEG-FA Loading of Protocatechuic acid (PCA)-
23.47% and Chlorogenic acid (CA)-
18.33%.

HT29 (Colon c
HePG2 (human
line)

GO-FA- bovine serum
albumin (GO-FA-BSA)

DOX
Loading- 437.43 lg DOX / mg
(GO-FA-BSA).

MCF-7 (human
cell line) FA-re
A549 (human
line) (FA-recep

FA–GO–PVP
(folic acid-GO-
polyvinylpyrrolidone,
M = 30 kDa)

DOX loading �107.5 %. HeLa cells

Fluorinated GO (FGO) loading of DOX � 200% HeLa cells

Pegylated folate and
peptide-decorated
graphene oxide
PEG-FA-Pep-GO

CPT loading- 90% HeLa cells

Graphene quantum dots -
carboxymethyl cellulose
hydrogel
(GQD - CMC)

DOX loading is dose dependent on
GQD
GQD(10%)-CMC � 4.5%, GQD(20%)-
CMC � 5.5 % GQD(30%)-CMC � 6 %

blood cancer c

GO-PVP and GO- b-
cyclodextrin (CD)

The anticancer drug SN-38 (7-ethyl-
10-hydroxy camptothecin)
The loading:- 1 g of GO-PVP loaded
0.17 g of SN-38 ;
1 g of GO-b-CD loaded 0.14 g of SN-38

MCF-7
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for pGO-DOX and 22 lg�ml�1 for pGO-CP [174]. Bullo et al. demon-
strated the possibility of GO functionalisation with PEG, FA, and
anticancer drugs protocatechuic acid (23.47% PCA) and chlorogenic
acid (18.33% CA-). The authors studied the conjugate GO-PEG-FA-
PCA-CA against two cancer cells HT29 (colon cancer cells) and
HePG2 (human liver cancer cells). Cytotoxicity experiments
revealed the following results: IC50 (HT29) = 50.69 lg∙ml�1, IC50

(HepG2) = 40.39 lg∙ml�1[175]. Gong et al. demonstrated that flu-
orinated graphene (FG) was used to load the mixture of DOX and
CPT after covalent functionalisation with CS; the load of DOX and
CPT was equal to 110% and 25%, respectively. The obtained conju-
gate FG-CS-DOX-CPT demonstrated the decrease of cell viability
towards HeLa cell line by 60 and 75% under laser irradiation at
aluated by cell viability assay.

ype of cancer Applied concentrations and IC50 or
approximate % of cytotoxicity at the highest
concentration

Reference

uman breast
a)

C = 2 and 20 lg�ml�1 for (GO-SO3H-DOX-FA), %
cytotoxicity = 20% and for GO-FA-DOX (%
cytotoxicity = 67%)
C = 0.002, 0.02 and 0.2 lg�ml�1 for (GO-FA-
DOX-CPT) of % cytotoxicity = 22% and (GO-FA-
CPT)
% cytotoxicity: = 26%

[166]

ls) C = 1–5 lg�ml�1 ;
% of cytotoxicity = 60%

[104]

C = 5–20 lg�ml�1

% of cytotoxicity = 69%
[167]

lung cancer cell C = 2.5 – 30 lg�ml�1

% of cytotoxicity = 90%
[243]

cancer cell line) C = 20 – 100 lg�ml�1

% of cytotoxicity = 76%
[171]

kemia cell line) C = 2 – 16 lg�ml�1

% of cytotoxicity (DOX) = 65%
% of cytotoxicity (MTX) = 55%

[172]

ancer cell line);
liver cancer cell

C = 1.56 – 100 lg�ml�1

% of cytotoxicity (HT29) = 58%
IC50 (HT29) = 50.69 lg�ml�1;
% of cytotoxicity (HepG2) = 61%
IC50 (HepG2) = 40.39 lg�ml�1

[175]

breast cancer
ceptor-positive)
lung cancer cell
tor-negative)

C = 0.01– 20 lg�ml�1

IC50 (MCF-7, 24 h) = 8.9 ± 0.7
lg�ml�1

IC50 (MCF-7, 48 h) = 0.048 ± 0.010 lg�ml�1 (% of
cytotoxicity = 83%)

IC50 (A549, 24 h) = 5.3 ± 0.7
lg�ml�1

IC50 (A549, 48 h) = 0.279 ± 0.037 lg�ml�1 (% of
cytotoxicity = 78%)

[244]

2 lg�ml�1; 20 lg�ml�1

(% of cytotoxicity = 71%)
[168]

C = 1.11 – 30 lg�ml�1

(% of cytotoxicity (24 h) = 70%)
(% of cytotoxicity (48 h) = 94%)

[177]

IC50 = 3.1 lM [245]

ells (K562) C = 2–32 lg�ml�1

With IC50 values of 5.1 lg�ml�1 GQD
(% cytotoxicity = 93%)

[246]

5 and 10 lg�ml�1

IC50(GO-PVP-SN-38) = 97 lM
(% cytotoxicity = 68%)
IC50(GO-b-CD-SN-38) = 170 lM
(% cytotoxicity = 65%)

[247]
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808 nm [176]. Gong et al. in another study showed the possibility
of carrying out non-covalent conjugation of FG with DOX (at 200%).
FG-DOX conjugate at the concentration of 30 lg�ml�1 significantly
decreased the cell viability of HeLa cancer cell line up to 94 % after
48 h incubation [177].

Shim et al. revealed in in-vivo study that rGO functionalised
with low-molecular-weight heparin (LHT7) acted as a tumor-
targeting molecule for the delivery of DOX. The conjugate rGO-
LHT7-DOX with rGO:DOX weight ratios 2, 1, 0.5, 0.1, demonstrated
high anti-tumor effect against human KB carcinoma cells (61.1 %
decrease of cell viability) as well as significant reducing of tumor
size by (92.5 ± 3.1)% [178]. Table 3 summarises examples of conju-
gation between anticancer drugs and the surface of GBN.

2.5. Graphene conjugations with biomolecules

Graphene and GO were conjugated with short chain peptides,
enzymes, and proteins by covalent or non-covalent attachment.
These molecules can react with the surface of graphene or the var-
ious oxygen functional groups of GO (carboyxyl, hydroxyl, epoxy,
and carbonyl groups), for example by forming amide bond
between the carboxylic group of GO and the NH2 group of the
enzyme or the protein. Also, the non-covalent attachment can take
place through hydrophobic, electrostatic, or p–p interactions
[179,180].

Wang et al. [181] showed the possibility of covalent conjuga-
tion of GO with antibodies (Ab) using bifunctional PEG (NH2–
PEG–COOH) as a linker. The carboxylic groups of GO linked with
the amino groups of PEG by EDC coupling forming amide bonds
and then the COOH groups of PEG were coupled with NH2 groups
of the antibody forming GO-PEG-Ab by the same reaction. The
obtained material can be used as sensors with high sensitivity
towards small molecules as antigens. Jokar et al. [182] performed
covalent functionalisation of GO with polyethylene glycol (M = 1
KDa) and HSA with subsequent non-covalent p–p interactions
with PTX for drug delivery (the PTX-loading was equal to 22%).
The authors pointed out that the release rate of PTX was faster in
the acidic mediums (at pH values of 5 and 6.8).

Kim et al. [105] showed that GO can be covalently conjugated
with polyethylenimine (M = 1.8 kDa) as a gene delivery cationic
vector through p–p stacking interactions with GO surface. At the
same time, the conjugate acted as a bioimaging material due to
its excellent photoluminescence properties. In our group GO was
covalently functionalised with L-methionine [183] and L-cysteine
[98] through amidation reaction. Moreover, we demonstrated the
high biocompatibility of these materials, in particular hemocom-
patibility without cyto- or genotoxicity.

The authors of [184-186] performed covalent and non-covalent
conjugation of GBN with biomolecules such as DNA, peptides, pro-
teins, enzymes, carbohydrates, and viruses for various applications,
for example, drug delivery, cancer treatment, tissue engineering,
bioimaging as well as the development of biosensors for detecting
very low concentrations of biomolecules such as antibodies,
nucleic acids, enzymes, or proteins especially for early diagnosis
of diseases [187-192]. Wang et al. [189] demonstrated that gra-
phene covalently modified by antibodies can detect in earlier
stages the disease markers such as hormones, enzymes, proteins,
sugars, peptides, and disease related genes. Zhang et al. [179]
demonstrated that GO covalently and non-covalently linked with
proteins (as BSA and trypsin), enzymes and peptides, can be
applied as a platform for further immobilisation of Au nanoparti-
cles for the application to biosensors and synthesising novel
graphene-based nanoarchitectures. Lu et al. [193] performed the
covalent functionalisation of amino-modified DNA with GO
through amidation reaction using EDC coupling for the purpose
of detecting heavy metals.
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3. Biocompatibility of GBN

Biocompatibility investigations of new materials usually
include the study of haemolysis, thrombocyte aggregation, binding
to human serum albumin (HSA), genotoxicity, cytotoxicity, and
plasma-coagulation haemostasis.

3.1. Haemolysis

Literature analysis reveals that the functionalisation of gra-
phene surface leads to decreasing the haemolysis and thus increas-
ing haemocompatibility. Liao et al. [194] showed that GO has dose
dependent hemolytic activity with TC50 = 20.2–49.6 mg∙ml�1 which
is the concentration of GO that causes 50% haemolysis, while gra-
phene sheets showed insignificant hemolysis (TC50 > 200 mg∙ml�1).
At the same time, the noncovalent functionalisation of GO with
chitosan didn’t demonstrate any hemolytic activity pointing out
that the functionalisation can protect erythrocytes. Pinto et al.
[195] showed that the noncovalent functionalisation of graphene
surface by polymers (poly(vinyl alcohol), poly(ethylene glycol),
poly(vinyl pyrrolidone), hydroxyethyl cellulose, chondroitin, glu-
cosamine, and hyaluronic acid resulted in decreasing haemolysis
to less than 1.7 % for all materials at concentrations up to
500 mg∙ml�1. In our previous works GO enriched by oxygen con-
taining groups (EOGO) as well as GO functionalised with L-
methionine (GFM) and L-cysteine (GFC) did not cause erythrocyte
membrane damage at up to 25 mg∙ml�1 [98,183,196].

3.2. Thrombocyte aggregation

Singh et al. [197,198] demonstrated that GO (C = 2 lg∙ml�1)
induced platelet aggregation. The functionalisation of GO with
amine functional groups did not activate platelet aggregation at
the same concentration range. The authors showed that the aggre-
gation caused by GO was even stronger than that initiated by
thrombin. Podolska et al. [199] determined that GO, rGO, and
rGO-PEG (C = 50 lg∙ml�1) did not stimulate platelet aggregation
in the presence of 2 mmol∙ml�1 of adenosine diphosphate (ADP).
GFC (up to 25 mg�l�1) did not stimulate the ADP-induced aggrega-
tion of platelets while GFM and EOGO demonstrated anti-
aggregation activity up to 25 mg�l�1 and 100 mg�l�1 respectively,
in the experiments of ADP and collagen induced aggregation.

3.3. Binding to human serum albumin

Ding et al. [200] revealed that GO (100 mg ml�1) can interact
with HSA through various types of interactions (covalent bonds,
hydrogen bonds, electrostatic forces, hydrophobic and p–p stack-
ing interactions). The interaction between GO and HSA led to mal-
functioning of HSA and its inability to remove toxins due to
conformational changes, meaning that GO is potentially toxic.
The functionalisation of GO surface by carboxylic groups (GO-
COOH, 100 mg ml�1) showed increasing biocompatibility as it
didn’t cause functional changes of HSA. In contrast, Taneva et al.
[201] demonstrated that GO (8 mg ml�1) interaction with HSA
did not cause toxic effect for HSA in the blood plasma due to the
low affinity of GO to HSA.

Ding et al. [200] determined the values of the dissociation con-
stant (the reciprocal of the binding constant) of the HSA complex
with GO (Kd = 27.5 lg�ml�1). The authors proposed that the forma-
tion of covalent bonds is due to the interaction of GO epoxy groups
and free amino groups of Lys and Arg of HSA by the nucleophilic
addition mechanism and hydrogen bonding. In turn, the interac-
tion of modified GO with HSA mainly occurs due to the formation
of hydrogen bonds because the epoxy groups are blocked by the



Table 4
Characteristics of GBN dispersions.

System Mechanism of dispersion stabilization Characteristics of dispersion Category of
stabilization
process

Reference

GO covalently functionalised by SO3H groups
(GO-SO3H).

The presence of negatively charged HSO3
-

functional groups on GO surface cause
electrostatic repulsion of the graphene layers.

Duration of stability
investigation: one month.
C(GO-SO3H) = 2 mg∙ml�1.
pH range: 3–10.
f-potential: �55–60 mV at pH 6.

Functionalisation [209]

Graphene noncovalently functionalised with
tetrapotassium salt of coronene
tetracarboxylic acid (G-CS)
Graphene was obtained by two methods:
thermal exfoliation of graphite oxide and
the arc evaporation of graphite in a
hydrogen atmosphere.

The negatively charged CS molecules form
noncovalent p-p stacking interactions with
graphene surface and prevent p-p stacking
interactions between graphene layers
stabilising the dispersions of G-CS.

Duration of stability
investigation: months.
C(G-CS) = 0.15 mg∙ml�1.

Functionalisation [54]

Graphene functionalised with hydroxyl groups
(G-OH).

(i) presence of oxygen containing groups;
(ii) high negative charge density of the
graphene surface.

Duration of stability
investigation: one month.
C(G-OH) = 0.1–5 mg∙ml�1.
f-potential: �50 mV.

Functionalisation [207]

Graphene-SiO2. (i) increased hydrophilicity due to the presence
of SiO2 groups;. (ii) steric hinderance effect
provided by the SiO2 groups.

Duration of stability
investigation: 7 days.

Functionalisation [213]

rGO non covalently functionalised with natural
polymers: sodium lignosulfonate (SLS,
Mw = 60000), sodium carboxymethyl
cellulose (SCMC,Mw = 250000), and pyrene-
containing hydroxypropyl cellulose (HPC-
Py).

rGO + SLS: (i) hydrophobic interaction of alkyl
groups and aromatic rings of SLS with
graphene surface through p-p stacking
interaction; (ii) the sulphonic groups (-SO3Na)
provide sufficient electrostatic repulsion.
rGO + SCMC: electrostatic repulsion of
carboxylate anions.
rGO + HPC-Py: steric repulsion caused by the
long polymer chains.

Duration of stability
investigation: four months.
C(rGO-polymer) = 0.6–2 mg∙ml�1.

Functionalisation [248]

rGO covalently functionalised with N-
(trimethoxysilylpropyl) ethylenediamine
triacetic acid (NEDTA).

The hydrophilic EDTA groups stabilized rGO-
NEDTA aqueous dispersions.

Duration of stability
investigation: three months.
C(rGO-NEDTA) = 1 mg∙ml�1.

Functionalisation [249]

Graphene + sodium dodecylbenzene sulfonate
(SDBS).
The graphene was obtained by ultrasound
exfoliation of graphite in water solution of
SDBS surfactant. The final nanomaterial
contained 40 % of multilayered graphene
(less than5 layers), 3% monolayered.

the aqueous dispersions were stabilised by
Coulomb repulsion between the G-SDBS
sheets.

Duration of stability
investigation: 6 weeks.
Particle size: 500 nm.
C(G-SDBS) = 0.5 mg∙ml�1.
f-potential: �50 mV at pH = 7.

Surfactant
addition

[211]

Graphene + ionic and nonionic surfactants
[P123, Tween 80,
Triton X-100, polyvinylpyrrolidone, poly
(sodium 4-styrenesulfonate), sodium
deoxycholate, sodium dodecylbenzene-
sulfonate, 1-pyrenebutyric acid, sodium
dodecyl sulphate, sodium
taurodeoxycholate hydrate,
hexadecyltrimethylammonium bromide].

Addition of ionic and nonionic surfactants
maintained exfoliation between graphene
layers through electrostatic repulsion forces.

Duration of stability
investigation: one month.
Size of graphene flakes: several
hundred nanometers
C(G-surfactant) = 1 mg ml�1.

Surfactant
addition

[250,251]

Graphene + sodium cholate (G-SC). Addition of amphiphilic surfactant provides p-
p stacking interaction with graphene surface
(through hydrophobic domains) and
stabilisation in water (through hydrophilic
domains). At the same time the electrostatic
repulsion between G-SC layers takes place due
to the presence of negatively charged cholate
ions on the graphene surface.

Duration of stability
investigation: one week C(G-
SC) = 11 mg∙l-1

f-potential: �45 mV.

Surfactant
addition

[212]

Graphene + anionic surfactant sodium dodecyl
benzene sulfonate (SDBS).

G-SDBS dispersions stabilized by the
electrostatic repulsion caused by addition of
SDBS that increases the charge density of
graphene surface.

Duration of stability
investigation: one week.

Surfactant
addition

[213]

Chemically converted graphene (CCG)
(synthesized by GO reduction by hydrazine
hydrate without total conversion of all
oxygen-containing functional groups and
remaining of few COOH groups).

The presence of carboxylate ions on CCG-
surface increases the electrostatic repulsion
between graphene layers.

Particle size: 200 – 1000 nm.
C(CCG) = 0.05 mg∙ml�1.
f-potential is pH dependent: �30
to �43 mV in the pH range 6.1 to
10.

Exfoliation [252,253]

GO Electrostatic repulsion between GO layers due
to presence of oxygen containing functional
groups (C-OH and COOH). pH can affect the
stability of colloids due to changing the charge
of nanoparticles in the following processes: (i)
protonation of acidic groups (C-OH and COOH)

Particle size: 200 – 1000 nm.
Highest f-potential � 48.6 mV at
pH 10.
The dispersions are stable of
pH = 4–11.

Exfoliation [253]
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Table 4 (continued)

System Mechanism of dispersion stabilization Characteristics of dispersion Category of
stabilization
process

Reference

in acidic medium (ii) deprotonation of C-OH
and COOH groups in alkaline medium leading
to increase of negative charge and electrostatic
repulsion.

GO + ethylene glycol (EG);
GO + deionized water (DW);
GO + ethanol (E);
GO + mineral oil (MO).

High polarity of the solvents (EG, DW and E)
leads to high f-potential values of GO;
nonpolar solvent (MO) leads to low f-potential
values of GO and hence decrease the stability
of dispersions.

Particle sizes (mm): 0.11 (GO-DW),
22.23 (GO-EG), 0.33 (GO-E), 0.90
(GO-MO).
C(GO) = 0.2 wt%.
f-potentials (mV):
-113.77 (GO-DW), 4037.1 (GO-
EG), �39.1 (GO-E),
6.60 (GO-MO).

Exfoliation [254]

rGO Due to presence of residual hydrophilic groups
after GO reduction such as hydroxyl, carboxyl,
and carbonyl groups.

Duration of stability
investigation: 15 days without
sedimentations while the authors
observed sedimentation after 45
days
C(rGO) = 0.2 mg∙ml�1.
f-potential: �50.9 mV at pH 12.

Exfoliation [255]

GO + polar solvents (water, methanol, ethanol,
DMF, THF).

Electrostatic repulsion forces due to the
presence of oxygen containing groups on GO
surface (hydroxyl and carboxyl) that stabilize
graphene dispersions due to increasing of
charge density.

Duration of stability
investigation: two months.
Size of particles: 1–10 lm.
C(GO) = 0.33 mg∙ml�1.
f-potential: �25 to � 46 mV
depending on solvent type.

Exfoliation [256]

Graphene-based
nanomaterials

Photodynamic agents

Antiviral agents

Biosensors

Anticancer agents
Delivery of drugs and biomolecules

Antibacterial agents Tissue engineering

Bioimaging

Diagnostics

Antifungal agents Theranostics

Fig. 14. The application of GBN in nanobiomedicine.
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carboxyl groups: the dissociation constant value for the interaction
between GFM, GFC, and HSA are equal to 185.2 [183] and 1600 [98]
lg�ml�1, respectively.
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3.4. Genotoxicity

Liu at al. [202] revealed that GO at concentrations up to
100 mg ml�1 induced mutagenesis due to interfering with DNA
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replication and altering gene expression patterns. Wang et al.
[203] reported that GO (up to 100 mg ml�1) possessed significant
genotoxicity to human lung fibroblast (HLF) cells due to DNA
damage through the generation of reactive oxygen species and
surface charge of GO. After functionalisation of GO surface with
PEG and lactobionic acid, the genotoxicity was significantly
decreased.

Akhavan et al. [204] demonstrated that the genotoxicity is
dependent on lateral size dimensions of graphene: the rGO
nanoparticles with average lateral dimensions of 11 ± 4 nm were
able to penetrate into the nucleus of the human mesenchymal
stem cells (hMSCs) leading to DNA fragmentations and chromoso-
mal aberrations at low concentrations (0.1 and 1.0 mg∙ml�1) after
1 h. At the same time rGO sheets with average lateral dimensions
of 3.8 ± 0.4 lm did not exhibit genotoxicity even at 100 mg∙ml�1

after 24 h. Both GFM and GFC did not demonstrate genotoxicity
up to 25 mg∙ml�1 as well as less genotoxicity recorded for EOGO
up to the concentrations of 100 mg ml�1[205].

3.5. Cytotoxicity

Wang et al. [206] indicated that GO (10–200 mg ml�1) cause
cytotoxicity in a dose dependent manner to human multiple mye-
loma RPMI 8226 cells through oxidative stress mechanism. Akha-
van et al. [204] revealed that the cytotoxicity of graphene is size
and concentration dependent. rGO with average lateral dimension
11 ± 4 nm is cytotoxic to hMSCs at 1 mg ml�1 while rGO with larger
average lateral dimension of 3.8 ± 0.4 mm showed less cytotoxicity
at higher concentration of 100 mg ml�1. Sun et al. [207] showed
that the functionalisation of graphene surface with hydroxyl func-
tional groups (G-OH) preserves viability of rat adipose tissue-
derived stromal cells (rADSCs). Wu et al. [208] demonstrated that
covalently functionalised GO with adipic acid dihydrazide (AD)
and hyaluronic acid (HA) had no cytotoxic effect towards HeLa
and L929 cell lines up to 200 mg∙ml�1. In addition, GFM, GFC, and
EOGO did not demonstrate cytotoxicity towards HEK293 cell line
up to 25 mg∙l�1 [98,183,205].
4. GBN dispersion stability

It is well known that graphene, GO, and rGO have different sta-
bility of colloid dispersions in water. Si et al. demonstrated that
pristine graphene has no despersibility because it has no oxygen
functional groups and due to having high density of hydrophobic
sp2 C = C bonds [209]. The ability of GBN to form stable dispersions
in water is referred to (i) the high polarity and forming hydrogen
bonds with water [210]; (ii) the presence of charged particles lead-
ing to high electrostatic repulsion between graphene flakes [211-
213].

The importance of GBN dispersions stabilisation is a key point
for its biomedical applications. GBN dispersions can be obtained
through various approaches: (i) exfoliation of graphene in definite
solvents without functionalisation or addition of stabilising agents
(surfactants or polymers); (ii) covalent or noncovalent functional-
isation of graphene surface which support stability of aqueous dis-
persions; (iii) using dispersing agents such as surfactants and
polymers that can be adsorbed on graphene surface and increase
the exfoliation, solvation and stabilisation of graphene layers in
aqueous dispersions [214]. Table 4 demonstrates the characteris-
tics of GBN dispertions.
5. Conclusion

GBN in the form of graphene, GO, and rGO are perspective
nanostructures in which the surface is enriched by electrons and
16
various oxygen-containing functional groups are present that
allow to perform covalent and non-covalent functionalisation lead-
ing to various nanomaterials that are promising in applications in
nanobiomedicine (Fig. 14) as targeted drug delivey, the treatment
of cancer, tissue engineering, bioimaging, biosensors, developing
antimicrobial and antiviral materials as well as in energy applica-
tions (batteries, solar cells, fuel cells, superconductors), textiles,
and electronics. Among GBN, GO is a leading nanomaterial due to
the presence of oxygen-containing functional groups along with
the p structure that can be exploited as a nanoplatform for cova-
lent or non-covalent loading of organic and inorganic compounds.
At the same time the presence of the functional groups provides
the stability of GO aqueous dispersions in contrast to graphene
or rGO.
6. Future remarks/recommendations

This review summarises the results of studies on covalent and
noncovalent functionalisation of graphene surface. Particular
attention is paid to establishing the relationship between the type
of functionalisation and the possibilities of GBN application in var-
ious fields of science and technology. Literature analysis reveals
the following trends in the study of GBN:

(i) there is a large body of data on covalent and noncovalent
modification of graphene surface which allows to vary the
physicochemical properties of the final nanomaterial and
affect the GBN dispersions stability;

(ii) large number of scientific works are devoted to the applica-
tion of GBN as nanomodifiers. The implementation of this
approach makes it possible to obtain new materials with
unique physicochemical and operational characteristics;

(iii) extremely relevant direction is devoted to the application of
GBN in medicine and bioanalysis. In this regard, the number
of publications on the study of biocompatibility, as well as
in vitro and in vivo studies of GBN is increasing annually.

At the same time, detailed analysis of the literature data reveals
the following drawbacks and problems that deserve special
attention:

(i) lack of data on identification of the synthesised nanomate-
rial. Often, the authors do not conduct a comprehensive
study of the structure and composition of the obtained
materials;

(ii) the question of reproducibility of GBN syntheses remains
open;

(iii) the literature presents a small number of studies aimed at
studying the stability of GBN dispertions;

(iv) there is no data on the metabolic pathways and toxicokinet-
ics of GBN for biomedicinal purposes;

(v) GBN biomedicinal studies are not comprehensive and do not
allow to analyse the full profile of the possibilities of using
these nanomaterials.
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[243] N.F. Rosli, M. Fojtů, A.C. Fisher, M. Pumera, Graphene Oxide Nanoplatelets
Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells,
Langmuir 35 (8) (2019) 3176–3182, https://doi.org/10.1021/acs.
langmuir.8b03086.

[244] N. Ma, J. Liu, W. He, Z. Li, Y. Luan, Y. Song, S. Garg, Folic acid-grafted bovine
serum albumin decorated graphene oxide: An efficient drug carrier for
targeted cancer therapy, J. Colloid Interface Sci. 490 (2017) 598–607, https://
doi.org/10.1016/j.jcis.2016.11.097.
22
[245] J. Tian, Y. Luo, L. Huang, Y. Feng, H. Ju, B.Y. Yu, Pegylated folate and peptide-
decorated graphene oxide nanovehicle for in vivo targeted delivery of
anticancer drugs and therapeutic self-monitoring, Biosens. Bioelectron. 80
(2016) 519–524, https://doi.org/10.1016/j.bios.2016.02.018.

[246] S. Javanbakht, H. Namazi, Doxorubicin loaded carboxymethyl
cellulose/graphene quantum dot nanocomposite hydrogel films as a
potential anticancer drug delivery system, Mater. Sci. Eng. C. 87 (2018) 50–
59, https://doi.org/10.1016/j.msec.2018.02.010.

[247] N. Karki, H. Tiwari, M. Pal, A. Chaurasia, R. Bal, P. Joshi, N.G. Sahoo,
Functionalized graphene oxides for drug loading, release and delivery of
poorly water soluble anticancer drug: A comparative study, Colloids Surfaces
B Biointerfaces. 169 (2018) 265–272, https://doi.org/10.1016/
j.colsurfb.2018.05.022.

[248] Q. Yang, X. Pan, F. Huang, K. Li, Fabrication of High-Concentration and Stable
Aqueous Suspensions of Graphene Nanosheets by Noncovalent
Functionalization with Lignin and Cellulose Derivatives, J. Phys. Chem. C
114 (9) (2010) 3811–3816.

[249] S. Hou, S. Su, M.L. Kasner, P. Shah, K. Patel, C.J. Madarang, Formation of highly
stable dispersions of silane-functionalized reduced graphene oxide, Chem.
Phys. Lett. 501 (1-3) (2010) 68–74.

[250] L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-
Rodil, A. Martínez-Alonso, J.M.D. Tascón, High-throughput production of
pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,
Carbon N. Y. 49 (5) (2011) 1653–1662, https://doi.org/10.1016/
j.carbon.2010.12.049.

[251] S. Wang, M. Yi, Z. Shen, The effect of surfactants and their concentration on
the liquid exfoliation of graphene, RSC Adv. 6 (61) (2016) 56705–56710,
https://doi.org/10.1039/C6RA10933K.

[252] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous
dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101–105,
https://doi.org/10.1038/nnano.2007.451.

[253] S. Kashyap, S. Mishra, S.K. Behera, Aqueous Colloidal Stability of Graphene
Oxide and Chemically Converted Graphene, J. Nanoparticles. 2014 (2014) 1–
6, https://doi.org/10.1155/2014/640281.

[254] J. Taha-Tijerina, D. Venkataramani, C.P. Aichele, C.S. Tiwary, J.E. Smay, A.
Mathkar, P. Chang, P.M. Ajayan, Quantification of the Particle Size and
Stability of Graphene Oxide in a Variety of Solvents, Part. Part. Syst. Charact.
32 (3) (2015) 334–339.

[255] H. Zhang, S. Wang, Y. Lin, M. Feng, Q. Wu, Stability, thermal conductivity, and
rheological properties of controlled reduced graphene oxide dispersed
nanofluids, Appl. Therm. Eng. 119 (2017) 132–139, https://doi.org/10.1016/
j.applthermaleng.2017.03.064.

[256] Z. Xia, G. Maccaferri, C. Zanardi, M. Christian, L. Ortolani, V. Morandi, V.
Bellani, A. Kovtun, S. Dell’Elce, A. Candini, A. Liscio, V. Palermo, Dispersion
Stability and Surface Morphology Study of Electrochemically Exfoliated
Bilayer Graphene Oxide, J. Phys. Chem. C. 123 (24) (2019) 15122–15130.

https://doi.org/10.1038/srep03909
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1160
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1160
https://doi.org/10.1557/mrs.2012.206
https://doi.org/10.1557/mrs.2012.206
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1170
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1170
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1175
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1175
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1175
https://doi.org/10.1016/J.NANOEN.2019.04.023
https://doi.org/10.1016/J.NANOEN.2019.04.023
https://doi.org/10.1016/J.CARBON.2017.11.087
https://doi.org/10.1016/J.CARBON.2017.11.087
https://doi.org/10.1039/C2NR30354J
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1195
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1195
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1195
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1195
https://doi.org/10.1016/J.ACA.2015.02.002
https://doi.org/10.1016/J.ACA.2015.02.002
https://doi.org/10.1016/J.BIOS.2015.06.068
https://doi.org/10.1016/J.BIOS.2015.06.068
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1210
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1210
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1210
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1210
https://doi.org/10.1021/acs.langmuir.8b03086
https://doi.org/10.1021/acs.langmuir.8b03086
https://doi.org/10.1016/j.jcis.2016.11.097
https://doi.org/10.1016/j.jcis.2016.11.097
https://doi.org/10.1016/j.bios.2016.02.018
https://doi.org/10.1016/j.msec.2018.02.010
https://doi.org/10.1016/j.colsurfb.2018.05.022
https://doi.org/10.1016/j.colsurfb.2018.05.022
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1240
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1240
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1240
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1240
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1245
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1245
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1245
https://doi.org/10.1016/j.carbon.2010.12.049
https://doi.org/10.1016/j.carbon.2010.12.049
https://doi.org/10.1039/C6RA10933K
https://doi.org/10.1038/nnano.2007.451
https://doi.org/10.1155/2014/640281
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1270
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1270
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1270
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1270
https://doi.org/10.1016/j.applthermaleng.2017.03.064
https://doi.org/10.1016/j.applthermaleng.2017.03.064
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1280
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1280
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1280
http://refhub.elsevier.com/S0167-7322(21)03093-2/h1280

	Functionalisation of graphene as a tool for developing nanomaterials with predefined properties
	1 Introduction
	2 Functionalisation of GBN
	2.1 Graphene conjugation with organic molecules
	2.2 Graphene conjugation with inorganic molecules
	2.3 Graphene conjugation with polymers
	2.4 Graphene conjugation with anticancer drugs
	2.5 Graphene conjugations with biomolecules

	3 Biocompatibility of GBN
	3.1 Haemolysis
	3.2 Thrombocyte aggregation
	3.3 Binding to human serum albumin
	3.4 Genotoxicity
	3.5 Cytotoxicity

	4 GBN dispersion stability
	5 Conclusion
	6 Future remarks/recommendations
	Declaration of Competing Interest
	Acknowledgements
	References


