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ABSTRACT
Non-small-cell lung cancer (NSCLC) is the primary form of lung cancer globally and remains a leading
cause of mortality. Anaplastic lymphoma kinase (ALK) mutations, such as I1171N + L1198H, have been
discovered to confer resistance to current ALK inhibitors, reducing their therapeutic effectiveness.
Addressing drug resistance necessitates exploring selective inhibitors for innovative therapeutic
approaches. In this study, a structure-based pharmacophore model, using ALK-approved inhibitors,
was developed to screen an In-house database for potential mutant ALK inhibitors. Compounds with
requisite pharmacophoric features were evaluated for binding potential against the I1171N + L1198H
ALK mutant phenotype. Selected hits underwent assessment for chemical reactivity, and dynamics
stability. The study identified five chemical scaffolds (NS1-5) with favorable binding modes and
pharmacokinetic properties. The conformational ensembles featured the average RMSD values,
ranging from 0.4 to 0.6 nm. RMSF analysis revealed consistent side chain fluctuations with reduced
flexibility, while Rog analysis indicated convergence of most complexes. NS1 and NS5, in particular
emerged as promising candidates, exhibiting remarkable performance than others, with binding free
energies of −210.12 ± 9.94 and −163.68 ± 11.14 kcal/mol, respectively. These findings thus suggest
further exploration and optimisation of NS1 and NS5 for mutant ALK inhibitors for the treatment of
NSCLC.
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1. Introduction

Cancer, a complex and pervasive disease, in its broadest mean-
ing, encompasses more than 277 distinct types. These cancer
types are differentiated based on the specific organ involved
and the unique histological features they possess [1]. Notably,
lung cancer emerged as a leading cause of cancer-related
deaths in developed countries. Particularly, non-small cell
lung cancer (NSCLS) [2] reigns supreme, accounting for
over 85% of all lung cancer cases. The NSCLC encompasses
a diverse array of subtypes including adenocarcinoma, large-
cell carcinoma and squamous-cell carcinoma [1]. Squamous
cell carcinoma accounts for approximately 25% of all lung can-
cers, characterised by the presence of abnormal squamous cells
in the lung lining. Adenocarcinoma, the most prevalent sub-
type, constitutes approximately 40% of lung cancers and orig-
inates in the cells that produce mucus in the lungs. Large cell
carcinoma, representing around 10% of lung cancers, is a less
common subtype with features that do not align with squa-
mous cell carcinoma or adenocarcinoma. Since they differ in
many features these subtypes respond differently to the treat-
ment, particularly, where specific genetic mutations are
involved. Therefore, personalised medicine approaches aim
to tailor treatments based on the specific characteristics of

the tumour, and ongoing research is providing valuable
insights into optimising therapeutic strategies for subtypes of
NSCLC particularly Anaplastic Lymphoma Kinase (ALK).
Although arising from several factors, the fusion event of
ALK with a partner gene representing a diverse range of mol-
ecular aberrations is regarded as a prevalent cause. To date, no
less than 19 different fusion partners for ALK have been
reported in NSCLC including KLC1, EML4, KIF5B and
TPR, consequently leading to an abnormal ALK fusion protein
[3]. The ALK receptor belongs to the family of tyrosine kinase
receptors, catalysing the phosphorylation of specific sites on
the protein. In a pioneering work, Iwahara and colleagues pro-
vided pivotal insights into the molecular architecture and dis-
tinctive functional attributes of the Anaplastic Lymphoma
Kinase Receptor Tyrosine Kinase (ALK RTK) [4,5]. The struc-
tural architect of ALK revealed three main parts: an extracellu-
lar binding domain (amino acids 19–1038), a region spanning
the membrane (amino acids 1039–1059) and an intracellular
kinase domain (amino acids 1060–1620). The kinase domain
harbours catalytic activity and participates in cellular signal-
ling pathways by phosphorylating its targets. Internally, the
domain comprises a small N-terminal and a large C-terminal
lobe connected by a flexible hinge region to form a cleavage
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that functions as an ATP-binding pocket [6]. As mentioned
previously, the fusion events, involving ALK, are involved in
the pathogenesis of cancer. Of the documented fusions, the
EML4-ALK fusion exhibits significant association with
NSCLC. At least 3%–7% of all NSCLC cases worldwide are
presented with EML4-ALK rearrangement underscoring its
notable presence within individuals afflicted from the dis-
cussed disease [6,7]. NSCLC exhibits inversion of chromo-
some 2P, fusing the N-terminal of EML4 with ALK’s kinase
domain subsequently generating a ligand-independent onco-
gene with altered enzyme activity, resulting in increased cell
division, proliferation and tumour formation [8,9]. Owing to
the well-documented role of targeting EML4-ALK fusion in
reducing NSCLC, the pursuit of identifying inhibitors against
EML4-ALK has emerged as a promising solution to combat
the associated malfunction [10]. In line with this, significant
efforts have been dedicated to discovering ALK inhibitors
during the past few decades. Starting with Crizotinib, the
first ALK inhibitor, was sanctioned by the FDA for the first-
line treatment of patients with ALK-positive NSCLC. The
mechanism of action involves binding to the ATP-binding
site of the kinase domain of ALK, immobilising the associated
function and locking the downstream activity [11]. Unfortu-
nately, the effectiveness of Crizotinib treatment is challenged
by clinically acquired mutations involving the gatekeeper
mutation, L1196M, as well as the other reported mutations
i.e. F1174C, I1171T, S1206Y, G1202R and G1269A [12].
Such drug-resistant mutations have prompted the interest in
the development of second-generation ALK inhibitors. Ceriti-
nib, Alectinib and Brigatinib are effectively used for the treat-
ment of ALK-positive NSCLC patients who did not respond to
Crizotinib [13]. However, clinical experiences and further
research have highlighted the mutations including G1202R
and F1174L, G1202R, I1171G, V1180L and L1196M and
G1202R responsible for conferring resistance to Crizotinib,
Alectinib and Brigatinib, respectively [14]. The following
scientific efforts resulted in the development of third-gener-
ation drugs such as Lorlatinib, a dual inhibitor of ALK and
ROS1 [15,16]. Clinical trials demonstrated remarkable thera-
peutic efficacy in ALK-positive NSCLC patients, overcoming
the known resistant mutations, including the G1202R
mutation, the commonest mutation associated with second-
generation drugs [17]. As discussed earlier, the therapeutic
strategies for ALK-positive NSCLCs involve the use of ALK
inhibitors, with documented success and favourable response
rate. While extensive efforts have been made, the intricacy of
cancer pathogenesis and the drive of cancer cells to survive,
unmasked the novel mutations i.e. I1171N + L1198H, confer-
ring resistance to even third-generation drugs. Therefore,
there is a dire need to develop innovative therapeutic agents
to overcome these emerging diverse resistance mutations, par-
ticularly high drug-resistant mutations. Furthermore by pro-
viding a tailored approach, therapeutics with improved
efficacy, good tolerability profile and reduced side effects,
can be designed [7]. Several experimental studies were dedi-
cated to shedding light on the drug response mechanism in
the presence of the acquired mutations in ALK, for identifying
inhibitors of drug resistance [18–20]. Karabencheva and col-
leagues [21] revealed the significant conformational alterations

affecting the dynamics of interactions imperative for the acti-
vation of enzymes in mutant types of clinical significance [21].
The distortion in the activation loop and the altered phos-
phorylation in two cases of the compound mutations i.e.
I1171N + L1198H and I1171N + F1174I have also been docu-
mented [7]. Another example is the work of He and the
authors, where insight into the development of alectinib resist-
ance following the mutations of I1171, V1180 and L1198, was
provided via molecular simulations [22]. On the other hand,
there is a growing interest in the development of new chemo-
types such as gilteritinib as an effective candidate for lorlati-
nib-resistant ALK (I1171N/F1174I) (Liang et al., [23]). The
Computer-aided drug design (CADD) has emerged as power-
ful and a reliable approach to accelerating the process of drug
discovery. Numerous cutting-edge computational techniques
have uncovered novel inhibitors which hold promise for
improved treatment. Advanced methodologies enabled
researchers to solve complex biological queries and diversified
the repertoire of inhibitors against hot spot drug targets which
consequently broadened therapeutic options[24–26]. Intri-
gued by this, the present study was set to identify potential
lead compounds against ALK mutants utilising a structure-
based virtual screening approach. The structural features of
the ALK bound to reported drugs were used to map the essen-
tial features responsible for the observed biological activity,
and in subsequent steps, the features were assembled in a phar-
macophore model which was then used to identify new com-
pounds against the target protein. In the following steps, the
binding modes were envisaged via molecular docking and
the compounds possessing promising affinities, desired inter-
molecular interaction patterns and good pharmacokinetic
profiles were progressed to detailed mechanistic insights via
dynamic studies. This study provides valuable information
tto significantly contribute to the development of effective
inhibitors for the resistant phenotypes of ALK, paving the
way towards therapeutic intervention against NSCLC.

2. Material and methods

Virtual screening (VS) is an important tool in identifying bio-
active compounds and filtering out hundreds of non-binders
from the available chemical space. Herein a multistage VS pro-
tocol was implemented. The approaches used include struc-
ture-based pharmacophore mapping, molecular docking,
molecular dynamic simulation and MMPBSA analysis to dis-
cover potential inhibitors against mutant ALK.

2.1. Dataset preparation

Utilising a dataset of biologically active chemical compounds,
prospective virtual hits against ALK were performed. In par-
ticular, the study employed 4 datasets, comprising a dataset
of 53 active compounds, four experimentally tested inactive
compounds, fetched from the literature, a set of 50 decoys gen-
erated for each active compound by the DUD-E web server
[27] and a screening library of ∼14,000 small molecules.
These compounds were subjected to initial preparatory steps
utilising the Structure Preparation module implemented in a
Molecular Operating Environment [27]. These compounds
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were then subjected to the correction of lone pairs followed by
the addition of hydrogen atoms as needed. In subsequent steps
to optimise energy and to introduce the partial charges, the
compounds were treated with MMFF94x force field [28].
The resulting compounds underwent drug-like filtration
using Lipinski’s rule of drug-likeness before proceeding with
further execution.

2.2. Pharmacophore-based virtual screening

2.2.1. Generation of structure-based pharmacophore
model
The pharmacophore model, an ensemble of essential features
required for the given biological activity, allows rapid screen-
ing of millions of compounds, with accuracy. The structure-
based pharmacophore model, in particular, accounts for the
crucial residues involved in binding compared to the ligand-
based model which is restricted to the chemical features of
the ligands only. In this connection, we generated a pharmaco-
phore model utilising structural coordinates of the kinase
domain of ALK bound with Crizotinib, Brigatinib and Lorlati-
nib with corresponding PDB identifiers of 2XP2 [11], 6MX8
[29] and 4CLI [30], respectively. The crystal structures were
superimposed based on the alignment of their amino acids
and the EHT annotation scheme, a most comprehensive
approach was selected for pharmacophore modelling. The
protein–ligand interaction profiling module allows compre-
hensive analysis and visualisation of intermolecular interaction
patterns and protein–ligand binding modes. Considering the
essential interactions, four distinct features, aromatic hydro-
phobic (Aro/Hyd), hydrogen bond acceptor (Acc), hydrogen
bond donor (Don2) and hydrophobic (Hyd), were selected
and a model was generated. The pharmacophore model was
then optimised by the addition of exclusion volumes to
exclude the false-negative rate without raising the false-posi-
tive one and to enhance the specificity and selectivity of the
model. All steps concerning the pharmacophore model gener-
ation were carried out on MOE.

2.2.2. Model validation
The efficiency of a pharmacophore underlies its ability to dis-
tinguish the active dataset from the inactive one, determining
the coherence of active compounds while excluding the inac-
tive subset [31]. Concerning this, the efficiency of the designed
pharmacophore was validated against a training set of actives,
in-actives and decoys. The statistical metrics, such as enrich-
ment factor (EF) and area under the curve (AUC), were also
calculated.

2.3. Target protein preparation

2.3.1. Protein modelling and preparation
At present, ∼ twelve entries are available for the ALK protein
bound with first-, second- and third-generation drugs in the
Protein Data Bank (PDB). However, for the present study,
the crystal structure of the kinase domain of ALK in complex
with the third-generation drug, Lorlatinib assigned with PDB
ID: 4CLI was used. Initial preparatory steps involved the
removal of irrelevant non-standard residues such as water

molecules and ligands that are not pertinent to our investi-
gation. The missing residues in the structure were modelled
followed by structure correction and protonation using
MOE. The optimised structure was then attained by energy
minimisation and the addition of partial charges using the
AMBER10EHT force field [32]. The rest of the parameters
were kept at default values.

2.3.2. Computational mutagenesis
Since the present work was aimed at the identification of a
novel chemotype against mutant ALK the mutations were
introduced into the wild-type ALK’s kinase domain employing
the ‘Residue Scan wizard’ in MOE. The process of mutation
entails the substitution of Isoleucine and Leucine residues at
positions 1171 and 1198 into Asparagine and Histidine,
respectively, resulting in the I1171N + L1198H variant (SI-
Figure 1), which confers resistance against all FDA-approved
drugs targeting ALK [7]. Since the goal was to identify new
chemotypes targeting the resistant phenotype, the mutated
protein was used as a target protein for further investigations.

2.4. Molecular docking

Molecular docking is an efficient and extensively used method
to explore the behaviour of ligands within a binding site of the
protein. The hit compounds obtained from the initial pharma-
cophore-based search were subjected to molecular docking to
envisage the exact binding mode. However, before the actual
docking run, bench marking was done for the software and
the docking protocol (SI-Figure 2). In specific, the co-crystal-
lised drug, Lorlatinib, was extracted and re-docked into the
ATP-binding site of the ALK (PDB: 4CLI) using MOE soft-
ware [27]. The Triangle Matcher algorithm and the London
dG were utilised as a placement method and a scoring func-
tion, respectively, with an induced fit approach. Afterwards,
the generated poses were refined using the GBVI/WSA scoring
function. The accuracy of the docking protocol was then eval-
uated by calculating the root mean square deviation (RMSD), a
standard measure for method evaluation, to determine the
difference between the coordinates of the crystallised pose
and the re-docked pose. In subsequent steps, the test dataset
was submitted for molecular docking simulation with a vali-
dated protocol. The docking grid was centred on the active
site of the ALK variant protein with grid dimensions of
30.79, 46.20 and 8.34 Å for x, y and z coordinates. The com-
pounds were assessed based on their binding affinities and
the inter-molecular interaction pattern was analysed using
the protein-ligand interaction fingerprint (PLIF) module in
MOE and protein-ligand interaction profiler (PLIP) [33].

2.5. SwissADME analysis

SwissADME is an online web server that can be utilised to cal-
culate several parameters including pharmacokinetics, bioa-
vailability, physicochemical, drug-likeness, synthetic
accessibility and toxicity of shortlisted compounds [34]. To
predict the pharmacokinetics, profiles of the canonical
SMILES of the test compounds obtained from docking were
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submitted to the web server. The results were then manually
compiled.

2.6. DFT calculation

Density Functional Theory (DFT) is a computational method
based on quantum mechanics used extensively in the fields of
chemistry, physics and material science to determine the elec-
tronic or nuclear structure of many-body systems, atoms and
molecules, particularly in the ground state. Owing to the
extreme usefulness of DFT in studying the electronic struc-
tures of molecules and providing chemical insights using the
relationship between the molecular orbitals, the DFT calcu-
lations were carried out. The geometries of all the compounds
were optimised using the density functional theory method,
B3LYP with a 6-31G** basis set based on its reliability and
accuracy in optimising the geometries as documented in the
literature [35–37]. Frequency analysis confirmed the structures
as true minima. Single-point energies were also calculated at
the same level. Global reactivity parameters were determined
not only to check the chemical reactivity of the compounds
but also to investigate the inhibitory action of the compounds.
All the calculations were performed using the Gaussian16 pro-
gram package [38].

Koopmans’s theory was utilised to calculate various elec-
tronic properties of the molecule, including electronegativity
(χ), ionisation potential (IP), electron affinity (EA), global
chemical softness (σ) and hardness (η).

EA = –ELUMO

h = (IP− EA)

s = 1/h

x = −h

2.7. MD simulation analysis

Molecular dynamics (MD) simulation is a computational tool
that functions similarly to a virtual experiment, allowing for
the observation and study of the temporal development of
molecular systems and offering insights into the dynamic
behaviour of molecules. In this study, freely available software
called GROMACS v2021.1 [39] and a GROMOS96 force field
were used to simulate the interaction analysis of 5 selected
compounds in complex with the mutated ALK system. Force
field defines potential energy and intermolecular forces,
defining molecular dynamic trajectories by controlling
bounded and non-bonded interactions. The topologies of
small molecules were generated via ACPYPE [40] and a simu-
lation box with dimensions of 10.71 × 10.71 × 10.71 Å, was
built up around the protein–ligand complex, ensuring it was
10 Å from the center of the complex. The box was filled with
SCP water model for solvation of the system and counter
ions were added to neutralise the system [41]. The steepest
descent algorithm with a maximum force of 1000 kJ mol−1

nm−1 was employed to minimise the system. The NVT and
NPT ensembles were used to equilibrate the system for 100
and 10,000 ps at the physiological temperature of 300 K and

the pressure of 1 atm, respectively. The Parrinello-Rahman
pressure coupling and the Berendsen thermostat were used
to maintain temperature and pressure during the simulation
[42,43]. Once the equilibrated state was attained, a 100 ns of
MD production run was executed for all the test systems.
Visual inspection of the simulated trajectories after simulation
was done using VMD [44]. To acquire insight into the stability
and flexibility of the protein–ligand complex, post-simulation
data were evaluated using metrics such as root mean square
deviation (RMSD), root mean square fluctuation (RMSF)
and radius of gyration (RoG). To enhance reliability and trans-
parency, simulated trajectories were utilised to plot graphs
through Xmgrace [45] to illustrate our results while the inter-
action diagrams were rendered with Chimera [46].

2.8. Molecular Mechanics-Poisson Boltzmann Surface
Area (MMPBSA)

TheMM-PBSA approach is a widely used, efficient and reliable
free energy simulation method to model molecular recog-
nition, including protein–ligand binding interactions. Molecu-
lar dynamics, with free energy calculation methods, can yield
energetic determinants to binding. The binding strength is
determined by the binding free energy, ΔG bind. Henceforth,
the fundamental objective of computer-aided drug designing is
to calculate the accurate and efficient free energy (ΔGbind). In
the current investigation, the g_mmpbsa module (http://
rashmikumari.github.io/g_mmpbsa) a plugin for GROMACS
[47] was used to calculate Gibb’s free energy. For each
protein–ligand complex, 1000 frames were considered from
the overall simulated trajectories, representing the last snap-
shots of 10 ns MD simulation. The study investigated the con-
tribution of different components of interaction such as polar
and non-polar solvation energy, van der Waals interactions
and electrostatic energy contributing to the total binding free
energy.

3. Result and discussion

The multifaceted role of ALK, ranging from cell signalling and
maintaining physiological homeostasis to the involvement in
diverse pathological processes particularly carcinogenisis, has
sparked substantial interest in the pursuit of developing effec-
tive anticancer therapeutics. Since the traditional drug discov-
ery methods are time-intensive and labourious, virtual
screening by harnessing the remarkable potential of compu-
tational algorithms enables the rapid identification of promis-
ing drug candidates. Virtual screening not only expedites the
identification of potential ALK inhibitors but also aids in the
design and optimisation of these compounds. The present
piece of work demonstrates the virtual screening strategy
directed to identify promising small molecules targeting the
ALK, particularly for the variant exhibiting resistance against
third-generation drugs.

3.1. Pharmacophore modelling and virtual screening

In pursuit of identifying potential lead candidates against the
target protein, the information regarding the necessary
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physicochemical features responsible for the observed biologi-
cal activity can greatly help in future identification and optim-
isation. The pharmacophore modelling in this regard provides
an ‘abstract of chemical features’ which differentiates between
the active and inactive compounds with modest accuracy and
correctly identifies many new active compounds from a
screening dataset. The quality of the pharmacophore model,
when structural coordinates are considered, greatly depends
on the fidelity of the crystal structure and the accuracy of the
annotation scheme employed to discern molecular features.

3.1.1. Construction of model
Herein, the pharmacophore model was constructed using
three well-resolute structures of ALK co-crystallised with
known small molecule inhibitors, Crizotinib [11], Brigatinib
[29] and Lorlatinib [15]. The visual inspection revealed that
the binding site of ALK featuring the native pocket for ATP
ravels essential molecular interactions including π-π, cation-
π and electrostatic interactions between ligands and amino
acid residues, namely Met1199, Glu1197, Ala1200, Asp1203,
Arg1253, Asn1254 and Asp1270. Employing a systematic
approach, crucial and distinctive features were incorporated,
and a refined pharmacophore model was developed. The
model encompasses essential features such as hydrogen bond
acceptors (Acc), hydrogen bond donors (Don2), hydrophobic
(Hyd) and aromatic hydrophobic (Aro/Hyd). It is predicted
that the developed model harbours the necessary molecular
attributes required for ligand recognition and binding, thus
providing a valuable framework for the pattern of inter-mol-
ecular interaction between the ligands and the target receptor.
In particular, the Acc feature was mapped onto Met1199,

which contributes to the structural integrity by linking the
large C and small N terminals of the ATP-binding pocket.
Similarly, the characteristics of Don2 are presented by
Glu1197, playing a crucial role in ATP binding to the ALK
receptor. Conversely, the Asp1203 and Asn1254, involved in
the catalytic activity of the receptor, displayed Hyd and Aro/
Hyd characteristics, respectively.

3.1.2. Validation of the model
A validation process to test the generated model is considered
a crucial step for a pharmacophore-based virtual screening. In
this regard, the specificity and sensitivity of a pharmacophore
model serve as a fundamental parameter in assessing the per-
formance’s reliability. The datasets utilised for validation com-
prised 53 actives, 4 in-actives [48] and a dataset of 3927 decoys,
to determine the recognition accuracy of both active and inac-
tive compounds. The optimised 3D pharmacophore model
reserved 43 out of 53 actives (81%), correctly excluding all
inactive compounds, and 372 out of 3927 (10%) decoys.
These fruitful results led us to the hypothesis that the pharma-
cophoric characteristics found in these drugs could be useful in
the development of new inhibitors targeting mutant ALK. The
pharmacophoric features are presented in Figure 1.

The other statistical matrices used to test the internal vali-
dation and efficacy of the constructed pharmacophore are
the enrichment factor (EF) and the area under the ROC
curve (AUC). The ROC curve analyses the rate of false posi-
tives and true positives to determine the model’s specificity
and sensitivity, which, in general, exhibits an inverse relation.
The differentiating potential of the model for positive and
negative datasets improves as the AUC value increases. The

Figure 1. (Colour online) Construction of a structure-based pharmacophore model (A) The alignment of structural coordinates of ALK corresponding to PDB IDs 2XP2,
6MX8 and 4CLI complexed with first-, second- and third-generation drugs, respectively. The common features extracted following superimposition, including Acc: cyan,
Don2: pink, Hyd: green and Aro/Hyd: orange colour. The exclusion volumes are shown in grey spheres.
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false positives were plotted against the true positives at varying
threshold values. The area under the curve (AUC) of the struc-
ture-based pharmacophore model in the current investigation
as depicted in Figure 2 was 0.79. The AUC between 0.5 and 0.6
signifies a biased model whereas the one ranging between 0.7
and 0.8 is considered acceptable for further utilities. The
acquired AUC value in the current study for the constructed
model suggests lies in an acceptable region hence, highlighting
the model’s efficacy in accurately distinguishing the actives
from in-actives.

The quality of the generated pharmacophore model was
further evaluated by calculating the EF, indicating the model’s
potential to enrich the activities within a given database. The
mathematical expression used for the EF calculation is given
by

EF = D × Ha/A × Ht

where D and A represent the total number of decoys and active
compounds, respectively; Ht is the hit molecules from the
decoy dataset and Ha shows the hit rate from the active dataset.
The EF for the tested pharmacophore model was 8.6 implying
its remarkable potential in retrieving the actives by random
selection.

3.1.3. Pharmacophore-based virtual screening
Once validated, the pharmacophore model was used to screen
the In-house database comprising ∼14,000 different types of
small molecules from synthetic as well as natural sources.
The screening aimed to find new ALK mutant inhibitors by
identifying compounds possessing similar pharmacophoric
properties as predicted by the model. The search resulted in
198 small molecules featuring identical properties to the devel-
oped model. These hits were then retained for further molecu-
lar docking simulation studies to envisage the binding mode
and to determine the binding affinities.

3.2. Protein modelling and mutational analysis

The compound mutation, I1171N + L1198H, in ALK protein is
associated with resistance to all approved Anaplastic Lym-
phoma Kinase and Tyrosine Kinase Inhibitors (ALK-TKI)

inhibitors. The L1198H mutation occurs within the ATP bind-
ing pocket, which is a specific region of the kinase domain of
the ALK. In contrast, the I1171N mutation is located adjacent
to the ATP binding pocket. The L1198H and I1171N
mutations are predicted to cause structural alteration in the
ALK, rendering it in a state which is not favourable for the
binding of the reported drugs. It is endorsed by the work con-
ducted by Salifu and colleagues [7], which indicated that the
wild type of protein exhibits a stable state and more consistent
backbone conformation with smaller fluctuations compared to
the I1171N + L1198H mutant protein. Therefore, the develop-
ment of a potent inhibitor capable of effectively targeting the
ALKmutant for the treatment of NSCLC is needed. To accom-
plish this, further docking studies were conducted on the
mutant ALK.

3.3. Molecular docking analysis

Lorlatinib was redocked into the ATP binding pocket of the
crystal structure of the kinase domain of the ALK receptor
for the validation of molecular docking software and protocol.
The redocking studies demonstrate the accuracy and efficiency
of the docking approach employing MOE in reproducing the
known binding conformation with an RMSD value of <1.
The intermolecular interaction pattern revealed that a hydro-
gen atom is donated by the backbone atoms of Met1199 and
accepted by the carbonyl’s oxygen from Glu1197 distant at
3.10 and 2.77 Å respectively. The additional interactions
observed were hydrophobic and involved Val1130, Lys1150,
Asp1203 and Leu1256 from the binding cavity. The validation
was followed by the docking of the test library and reference
drug, Lorlatinib in the ATP-binding pocket of I1171N +
L1198H mutant of ALK’s Kinase domain. The binding mode
of Lorlatinib, towards wild-type and mutant ALK protein, is
depicted in Figure 3(A) and the interaction pattern for Lorla-
tinib and wild-type ALK complex is shown in Figure 3(B).

The findings indicate the displacement of Lorlatinib from
the position corresponding to the wild type of target protein
and projected a docking score of −5.0 kcal/mol. It further
demonstrated the loss of interactions with hinge residue
including Met1199 and Glu1197 in the I1171N + L1198H
mutant system (Figure 4(A)), which might be a contributing
factor in conferring resistance to the drug [7].

Thus, in the present work, the prerequisite for the selection
of the compounds was based on the potential of establishing
the interaction with the mutated residues, Asn1171 and/or
His1198. The interaction analysis resulted in a dataset of 28
compounds with good affinities, ranging from −6.0 to
−8.0 kcal/mol and desired interaction profile. Finally, five
compounds were shortlisted for detailed investigation, the
structural details in 2D format are mentioned in supplemen-
tary information (SI-Figure 1).

3.3.1. Binding modes and interaction pattern of
shortlisted hits
Compound NS1, a Benzofuran derivative, presented with
strong intermolecular interactions, as evidence from the dock-
ing score of −7.04 kcal/mol, compared to Lorlatinib. Specifi-
cally, two hydrogen bonds, one with mutated residue

Figure 2. (Colour online) The AUC-ROC Plot, illustrating the classification per-
formance achieved by the constructed pharmacophore model. The AUC values
were generated using the ROCR function in the R package.
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His1198 and the other with Gly1202, at distances of 2.81 and
3.43 Å, respectively, were observed. The hydrophobic inter-
actions with Leu1122, Ala1148 and Leu1256 provided further
stability to the complex (Figure 4B). Leu1122 residue is in the
glycine-rich loop of the ALK. The G-rich loop of the protein
anchors the α and β phosphates of ATP, allowing the γ

phosphate to be properly aligned for catalysis [49]. The inter-
action with Leu1122 thus interferes with the ATP access to the
G-rich loop consequently, inhibiting the catalysis of ALK and
arresting cell proliferation. Crizotinib, an FDA-approved pyr-
azolopyridine-based inhibitor is the first-generation inhibitor
of the target protein. The mechanism of action of Crizotinib

Figure 3. (Colour online) Docking studies of Lorlatinib, a third-generation ALK inhibitor (A) Docked pose of Lorlatinib, towards two distinct conformations of the ALK
protein, the wild-type (Tan sticks) and mutated (Cyan sticks) ALK protein harbouring the I1171N+L1198H mutations (B) Detailed overview of inter-molecular interaction
pattern for Lorlatinib and wild-type ALK complex.

Figure 4. (Colour online) The panels (A–F) show the static modes of the Lorlatinib and shortlisted hits, labelled Compound-NS1-NS5. The crucial residues are depicted
as cyan sticks, dotted lines in black representing hydrogen bonds, while the test compounds are present in differently coloured sticks. The figures were generated using
UCSF Chimera 1.14.
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involves binding to the Leu1122 residue by hydrophobic inter-
actions [50] highlighting the importance of this specific inter-
action and the inhibitory potential of NS1.

The compound NS2 is a Dihydroquinoxaline derivative
and revealed a binding affinity of −6.87 kcal/mol. A combi-
nation of interactions was observed including hydrogen
bonds and hydrophobic contacts (Figure 4(C)). Met1199
and His1198 established the hydrogen bonds with the ligand
atom at a distance of 2.43 Å and 2.38 Å, respectively.
Met1199 plays an important role in linking the C- and N-
lobe of the kinase domain forming an ATP binding pocket
known as the hinge region [51]. This hinge region coordi-
nates the binding of 6-amino nitrogen of ATP to the binding
site, initiating the subsequent catalytic process, thus trigger-
ing downstream signalling pathways responsible for cell
growth, proliferation and survival. Additionally, the crucial
rule of the Met1199 in providing stability to the ligand has
been reported in the literature [52]. Thus, the oxygen of the
benzimidazole moiety from Compound NS2 may hinder
the catalysis and effectively block the downstream processing.
The hydrophobic contacts were observed with Leu1122,
His1124, Val1130, Asp1203 and Leu1256 residues contribut-
ing to the stable binding. Compound NS3, a Benzodioxol
derivative, was held in place through several interactions
with the target protein, resulting in a binding score of
−7.04 kcal/mol. The ligand under consideration entails the
formation of two hydrogen bonds involving His1198 and
the Met1199 positioned at the distance of 3.53 Å and
2.55 Å, respectively, as illustrated in Figure 4(D). Further-
more, the crucial residues i.e. Leu1122, Val1130, Ala1148
and Leu1256 [53], have hydrophobic contacts with the ligand.
In Compound NS4, a benzo hydrazide derivative hydroxyl
group established a hydrogen bond with Asp1203 having a
bond length of 3.12 Å. The hydrophobic interactions have
Leu1196, His1198 and Leu1256 (Figure 4(E)). The binding
affinity of the corresponding compound with the targeted
system was −6.94 kcal/mol.

The carboxamide derivative, Compound NS5, with a qui-
noline moiety, with a binding affinity of −7.55 kcal/mol, estab-
lished a hydrogen bond with His1198 at a distance of 2.19 Å, as
presented in Figure 4(F). Moreover, the compound engages in
hydrophobic interactions with catalytic residues i.e. Leu1122,
Val1130 and Lys1150. Lys1150 is also a critical residue
involved in the catalytic process of ALK by forming a salt
bridge with the glutamate residue of the alpha C helix located
in the C-terminal of the protein. The region is responsible for

controlling the different conformations of the protein, specifi-
cally the active and inactive states. The mentioned salt bridge is
imperative for the active state of kinase [50] hence, binding of
an inhibitor to the Lys1150 is predicted to interfere with the
kinase activity and associated function.

3.4. Swiss ADME

The pharmacokinetic profile of a drug plays an essential role
in assessing its effectiveness and safety during the drug devel-
opment process. In silico methods, specifically, ADME
(absorption, distribution, metabolism, excretion and toxicity)
were employed for predicting key pharmacokinetic proper-
ties, for identifying compounds possessing favourable proper-
ties. Bioavailability, an indicator of a drug which gets to the
bloodstream, is an essential consideration in determining
the efficacy of an orally administered drug. It has been estab-
lished that predicting ADME properties early in the discovery
phase significantly lowers the proportion of pharmacoki-
netics-related failure in the clinical stages [54]. The assess-
ment of physicochemical and pharmacokinetic properties,
involving molecular weight (MW), number of hydrogen
bond acceptors (nHA), number of hydrogen bond donors
(nHD), gastrointestinal (GI) absorption, aqueous solubility
(LogS), lipophilicity (Log P) and blood–brain barrier (BBB)
permeability permitted to sort out compounds that might
face challenges in terms of absorption and distribution. In
this pursuit, the hits 28 in number, obtained from the preced-
ing docking studies were followed for the analysis of physico-
chemical and pharmacokinetic properties via Swiss ADME.
The factors evaluated include Lipinski’s rule of five, com-
pound’s solubility and gut absorption. The compounds per-
meating the blood–brain barrier were eliminated, resulting
in a set of nine compounds. Of these, the comprehensive
insight considering the docking score, inter-molecular inter-
action pattern and Swiss ADME profile leads to a refined
dataset of five compounds. The physicochemical and pharma-
cokinetic properties of the compounds are summarised in
Table 1. The five virtual hits fall within an acceptable range
for all the aforementioned properties. The accepted range
for MW reported in the literature varies from 150 and 500
g/mol. All the five hits identified in the present work fall
within this range. The prediction suggested that diminished
absorption or permeation is probable in instances where
there exist more than 5 hydrogen bond donors and 10 hydro-
gen bond acceptors [55]. Particularly, the investigated

Table 1. Comprehensive evaluation of shortlisted compounds through Swiss ADME.

ADME Analysis NS1 NS2 NS3 NS4 NS5

Mol. wt. (g/mol) 285.24 338.38 374.47 386.91 419.39
H.B. acceptors 5 3 5 3 7
H.B. donors 1 2 3 2 1
Log P (lipophilicity) 1.80 2.08 3.00 3.66 1.52
Water solubility Soluble Soluble Moderate Moderate Soluble
Log S (ESOL)
GI absorption High High High High High
BBB permanent No No No No No
Lipinski Violation 0 0 0 0 0
PAINS alert 0 0 0 0 0
Synthetic accessibility 3.00 2.70 4.00 3.18 3.12
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compounds displayed favourable outcomes, as each of them
holds fewer than 5 hydrogen bond donors and less than 10
hydrogen bond acceptors. Log P, on the other hand, is a
measure of lipophilicity although a higher value might indi-
cate potential challenges in solubility, it’s essential to carefully
evaluate this parameter in the context of overall drug design.
The optimal values have been stated depending upon the
hypothesis and the desired outcome, though the generally rec-
ommended range falls between −0.5 and 7.0. A soluble mol-
ecule is essential to optimised drug development, ensuring
ease in handling and formulation [56]. Additionally, a drug
intended for intramuscular administration must exhibit
high water solubility to deliver an adequate amount of the
active ingredient in the limited volume of the pharmaceutical
dosage [58]. The obtained result indicated that the studied
compounds are soluble in water as shown in Table 1. As dis-
cussed earlier, one of the key aspects of CADD is to aid in the
selection of the most promising virtual compounds for syn-
thesis and testing, with synthetic accessibility (SA) being a sig-
nificant factor. The optimal synthetic accessibility (SA) range
is from 1 (showing ease of synthesis) to 10 (representing
difficulty in synthesis [34]). The studied compounds fall
within a range of 2–4, indicating a favourable correlation.
Moreover, high gastrointestinal absorption was predicted
for all compounds, further highlighting their potential utility
via oral administration. Further insight into hits concerning
the chances of undesired off-site effects and potential cross-
reactivity was checked, employing pan assay interface com-
pounds (PAINS) prediction. The PAINS predicts molecules
that exhibit nonspecific interactions with multiple biological
targets rather than the selective mode of action. Remarkably,
our analysis revealed that none of the compounds displayed
PAINS-like behaviour and was specific and non-cross reac-
tive, emphasising again, their potential to be used as a drug
candidate.

3.5. DFT study

At present, DFT is accepted as a popular post-Hartree–Fock
(HF) approach for the ab initio computation of molecular
structures and the energies of molecules (Kurt et al., 2008
[59]). It is extremely useful in the study of the electronic struc-
tures of molecules. Moreover, an attempt is made to attain
chemical insights using the relationship between the highest
occupied molecular orbital (HOMO)-lowest unoccupied mol-
ecular orbital (LUMO) gaps in the considered compounds.
The obtained results were justified with global reactivity
descriptor studies to give a deeper insight into the chemical
reactivity or inhibitory capacity of a given compound.

3.5.1. Optimised molecular structures
To get the molecular and electronic insights of the hit mol-
ecules, geometric optimisation was done using hybrid DFT
functional, B3LYP with a 6-31G** basis set available in Gaus-
sian 16. The optimised molecular configurations of the hit
compounds are presented in Figure 5, whereas the correspond-
ing energies are depicted in Table 2. All the optimised struc-
tures gave no negative vibrational modes indicating that all
the structures were stationary points in the geometry

optimisation procedures. Frequency vibrational analysis was
applied to confirm that the obtained structures are stable
with no imaginary frequencies.

3.5.2. Frontier molecular orbital analysis
DFT calculations were utilised to quantify the chemical reac-
tivity of the analysed compounds. Hence, frontier molecular
orbital (FMO) analysis was performed. In molecular systems,
FMO plays a crucial role in drug design. The energy of the
highest occupied molecular orbital (EHOMO) and lowest
unoccupied molecular orbital (ELUMO) were determined.
The EHOMO measures a molecule’s ionisation potential,
while the ELUMO measures its electron affinity [60]. The
difference in HOMO and LUMO energies represents the
energy gap (EH-L). The EH-L serves as an indicator of the
structural stability of a molecule. The HOMO and LUMO,
often known for molecular descriptive energy gap compu-
tation, provide information on a compound’s electrical, opti-
cal, and biological reactivity characteristics and stability. A
narrow energy gap signifies high chemical reactivity and
low kinetic stability, leading to easy excitation from the
HOMO to the LUMO and vice versa. The results of various
parameters, including total energy (ETotal), electronegativity,
ionisation energy, electron affinity, EHOMO, ELUMO, EH-L,

chemical hardness and chemical softness are presented in
Table 2.

Based on the results, out of the five tested compounds, NS1
and NS5 showed the highest chemical reactivity (i.e. these are
soft compounds), as evidenced by the lowest energy gap of
3.51 and 2.12 eV, respectively, compared to Lorlatinib
(4.08 eV) and other compounds. However, NS2 exhibited the
lowest chemical reactivity due to its highest EH-L value
(4.98 eV). This information is useful in predicting the properties
and behaviour of molecules in various chemical reactions and
environments. In the generated HOMO–LUMO counter plot,
the distribution of red and green colours represents the positive
and negative phases, respectively, of the molecular orbitals [61],
as shown in Figure 6. The spatial distributions of HOMO and
LUMO of a ligand play a critical role in determining the nature
of its interaction with a potential receptor. The HOMO of the
ligand interacts with the LUMO of the receptor, and vice
versa. Therefore, elevating the energy of the HOMO level of
the ligand reduces the energy gap between the HOMO and
LUMO levels of the ligand and receptor, respectively, thereby
increasing the probability of binding. Conversely, decreasing
the energy of the LUMO level of the ligand also increases the
likelihood of binding [61]. It is clear from the molecular orbital
diagrams of the NS1-NS5 the electron densities in the HOMOs
of all these 5 compounds were largely located on donor moiety,
and electron densities on the LUMOs were found localised on
the acceptor. The excitation from HOMO to LUMO mostly
consists of charge transfer from the donor to the acceptor
end. The HOMO–LUMO energy gap explains the charge trans-
fer interactions within these compounds.

3.5.3. Global reactive indices
Global reactivity indices offer insights into the chemical reactiv-
ity or inhibitory capacity of a given compound, providing valu-
able information from a chemical perspective. Theoretical static
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calculations are employed to obtain the reactivity indices that
pertain to molecular orbitals [62]. These indices include chemi-
cal hardness (η) and softness (σ) that describe a molecule’s
potential to be stable or reactive. The high softness and low
hardness value of a molecule indicate that it is a potent inhibitor.

In other words, molecules with higher softness values are more
likely to react readily and form bonds, while those with lower
hardness values require more energy to undergo a chemical
reaction. The global reactivity indices values calculated for the
hit compounds indicated that NS1 and NS5 exhibit the lowest

Table 2. Thermodynamics parameters and molecular orbital energy values of selected hit compounds.

Compounds ETot (ev)
ELOMO
(ev)

EHOMO
(ev)

EH-L
(ev)

Electronegativity
(x)

Ionisation
Potential (ev)

Electron
Affinity (ev)

Chemical hardness
(η) (ev)

Chemical softness
(σ) (eV−1)

NS1 −27,351.40 −2.69 −6.20 3.51 4.44 6.20 2.69 3.31 0.30
NS2 −38,746.83 −0.82 −5.81 4.98 3.32 5.81 0.82 4.99 0.20
NS3 −33,538.91 −1.05 −5.90 4.85 3.48 5.90 1.05 4.85 0.21
NS4 −42,851.33 −1.50 −5.66 4.15 3.58 5.66 1.50 4.16 0.24
NS5 −39,721.80 −3.51 −5.63 2.12 4.57 5.63 3.51 2.12 0.47
STD −37,836.79 −1.38 −5.46 4.08 3.42 5.46 1.38 4.08 0.24

Figure 5. (Colour online) Optimised geometric structures of the shortlisted hits obtained by the DFT method.
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hardness value, and the highest softness value, which indicates
their high reactivity. Additionally, their lowest hardness value
and the highest softness value indicate that they are potent
inhibitors. On the other hand, compounds NS2, NS3 and NS4
have shown lower softness values than the standard compound,
indicating its lower reactivity.

3.6. MD simulation

A detailed exploration of binding strength in a dynamic state
was studied at the atomic level via MD simulation. Six systems
were considered, including the five ligand–protein complexes
and an unbound target protein. The rigorous examination of

Figure 6. (Colour online) Spatial distribution of HOMO and LUMO molecular orbitals for NS1, NS2, NS3, NS4, NS5 and NS6 calculated via Gaussian 16 software package.
Pictures were rendered using Gauss view 6.
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both the free and bound states provided a comprehensive over-
view of the inter-molecular interactions and the structural per-
turbation upon ligand binding. In specific the stability matrices
considered herein quantified the overall deviation, the move-
ment at the residue level, and the compactness over time
about initial conformation.

3.6.1. Root mean square deviation
The Root Mean Square Deviation (RMSD) offers an insight
into the conformational changes which, in turn, determine
the structural stability of the system under study. As men-
tioned earlier, RMSD is one of the commonly used matrices
when studying structural deviations and is regarded as a
potential predictor in assessing the system’s quality. In the
case of protein–ligand complexes, the RMSD sheds light on
the stability of the system under study as a function of time.
Herein, the protein’s backbone atoms were included while cal-
culating the RMSD, providing a quantitative measure of struc-
tural variations. The findings indicated that the RMSD value
for the mutated protein in the ligand-free (apo) form falls
between 0.5 and 0.6 nm. In general, the RMSD values for the
test compounds lie below 0.5 nm except for the NS1-bound
protein suggesting the stable binding mode in the targeted
pocket. The most stable pattern of deviation was observed
for the protein bound to the NS5 with an average RMSD
value of 0.4 nm. An overview of the RMSD pattern is presented
in Figure 7. The average deviation was 0.44 ± 0.02, 0.55 ± 0.03,

0.46 ± 0.03, 0.48 ± 0.03, 0.52 ± 0.01, 0.46 ± 0.03 nm for the
ligand unbound mutant ALK and NS1-5 + ALK systems,
respectively.

The observed variations in the RMSD values during the
initial intervals stem from the necessary structural adjustments
made by the ligand molecules to accommodate and bind the
targeted cavity. However, the convergence was achieved after-
wards as evidenced by a consistent pattern resulting from the
strong and stable interactions established by the ligand within
the active site. These findings indicate the potential of selected
hits in maintaining the structural integrity with time conse-
quently, providing evidence of favourable binding and reinfor-
cing the potential therapeutic relevance.

3.6.2. Root mean square fluctuation
The dynamic variability and insight into per-residue move-
ments as a function of time were assessed via root-mean-
square fluctuation (RMSF). The extent of fluctuation of the
side chains of protein residues was nearly identical across
the tested complexes, as illustrated in Figure 8. In general,
the studied systems demonstrated reduced fluctuations
throughout the simulations compared to their initial place-
ment. Meanwhile, the loop region displayed a minor degree
of fluctuation across all systems compared to free protein,
while the areas encompassing the active site residues exhibited
marked stability throughout the simulation period.

Figure 7. (Colour online) A depiction of the RMSD profile for backbone atoms of the ligand unbound or Apo protein (Black) and the ligand bound ALK for five identified
hits (A–E) calculated as a function of time, (F) A comparative overview for the stability of backbone atoms observed for simulated systems. The colour scheme aligns
with the hits (A–E), facilitating visual understanding.
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A mixed pattern of fluctuation was noticed for the bind-
ing pocket residues as displayed in SI-Figure 4. NS1 and
NS3 imparted rigidity to some of the residues while indu-
cing significant flexibility to other residues compared to
the free state of the protein. The pocket residue for
instance Leu1122 yielded an RMSF value of 0.170 nm in
the apo state which decreased to 0.144, 0.143 and
0.156 nm in the case of protein bound to NS1, 3 and 4,
respectively. However, the increased fluctuation was
noticed for the backbone atom of the target protein
bound to NS5 (0.216 nm).

3.6.3. Radius of gyration
The influence of ligand binding on the folding behaviour of a
protein was monitored by the Radius of Gyration (Rog). The
Rog evaluates the compactness of the system over time, with
higher values indicating an unfolded conformation and vice
versa. The system studied herein demonstrated a compact
state during the terminal stages of the simulation, except for
NS1 Figure 9. In most cases, the complex system required
20 ns for initial adjustment except NS1, which reached equili-
brium after 25 ns and showed insignificant fluctuations during
the 75–85 ns time frame. The average deviation observed for
the ligand unbound mutant ALK and NS1-5 + ALK was 2.12
± 0.01, 2.13 ± 0.02, 2.12 ± 0.01, 2.11 ± 0.02, 2.08 ± 0.01 and
2.13 ± 0.02 nm, respectively. Overall, the data indicate that
all systems maintained a compact conformation throughout

the simulation, implying that the systems have achieved
convergence.

3.7. MM-PBSA binding free energy study of shortlisted
hits

Molecular mechanics Poisson–Boltzmann surface area (MM/
PBSA) is arguably the most extensively employed approach
to assess the energetic factors involved in binding. Via inte-
grating the energetic calculations employing molecular mech-
anics and implicit solvent models, the method describes the
collective contribution of non-bonded interactions i.e. van
der Waals, electrostatic, polar salvation and SASA between
the heterocomplex over the simulation run. The low value
(more negative) of free energy indicates a stable and thermo-
dynamically favoured state. However, a higher value signifies
a weaker binding and consequently a less stable state.

The free energy calculation using the Molecular Mechanics/
Poisson-Boltzmann Surface Area (MM/PBSA) approach holds
considerable prominence in computational chemistry and
drug design. Since it provides definite information regarding
the binding affinities of selected protein–ligand complexes, it
thus aids in understanding the determinants of molecular rec-
ognition. Herein, the collective impact of energetic factors
such as non-bonded interactions including van der Waals,
electrostatic, polar salvation and SASA are calculated as mol-
ecular mechanics and implicit solvent models during

Figure 8. (Colour online) Time-dependent RMSF analysis presenting fluctuations of every amino acid residue within the simulated systems (A–E) during the targeted
time frame alongside (F) a comparative overview employing a similar colour scheme as for the individual hits.
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simulation (Table 3). The calculations revealed that the most
stable and thermodynamically favourable state has been
achieved by NS1 as evidenced by the highest ΔGbind value
of −154.96 ± 14.34 kcal/mol. Conversely, the lowest binding
affinity (−33.06 ± 14.83 kcal/mol) was observed for NS2.
These results agree with the preceding findings, highlighting
the remarkable potential of NS1 to establish consistent electro-
static and hydrophobic interactions with the crucial residues of
the target protein compared to the fewer stable inter-molecular
contacts for the NS2 bound system. To gain further insight
into the key elements determining the binding process, the
total binding free energy was divided into several energy com-
ponents. It was revealed that the electrostatic (Eelec) and van
der Waals (EvdW) interactions favoured the ligand binding
while antagonised by the polar solvation-free energy. In par-
ticular, the binding energy was significantly influenced by
the van der Waals interactions, with NS1 having the highest
van der Waals energy, followed by NS5 while NS2 bound
ALK presented with the lowest van der Waals energy. As evi-
dent from the results, the electrostatic contributions were also

there but the impact was noticeably smaller than the hydro-
phobic component. Furthermore, Solvent-accessible surface
area energy (SASA) was computed to evaluate the thermodyn-
amic stability of the complex, with a lower SASA value
suggesting more contracted centres and higher thermodyn-
amic stability. As shown in Table 3, the system demonstrated
stable conformation. Although all the hits exhibited stable
binding mode and good binding energy profile, the NS1 and
NS5 exhibited exceptional performance in all the tested
parameters.

Considering the results obtained via an array of matrices
studied in the present work, the identified hits emerge as
potential candidates for future consideration against resistant
phenotypes of ALK, a step towards the development of potent
chemotypes to combat NSCLC. Although the pharmacophore-
based virtual screening, particularly the structure-based
models effectively prioritises potential candidates for drug dis-
covery, the lack of experimental validation via in vitro and test-
ing in animal models poses a limitation. Furthermore,
computational mutagenesis was performed; however, a

Figure 9. (Colour online) Radius of Gyration unveiling structural changes in the studied systems as a function of time for the identified hits (A–E), along with (F) an
overlaid graph for comparison.

Table 3. The binding free energy and different energy components calculated via the MMPBSA approach for the studied systems.

Energy component (kcal/mol) NS1 NS2 NS3 NS4 NS5

Van der Waal (kcal/mol) −210.12 ± 9.94 −130.46 ± 10.36 −161.18 ± 12.86 −133.23 ± 9.93 −163.68 ± 11.14
Electrostatic energy (kcal/mol) −15.69 ± 4.38 −73.29 ± 10.29 −14.63 ± 6.68 −72.49 ± 10.42 −64.46 ± 14.74
Polar solvation energy (kcal/mol) 90.81 ± 14.85 188.57 ± 17.95 120.38 ± 18.24 177.57 ± 17.52 167.80 ± 12.68
SASA energy (kcal/mol) −19.97 ± 1.18 −17.88 ± 0.99 −18.60 ± 1.19 −17.06 ± 0.99 −19.09 ± 1.42
Binding Energy (kcal/mol) −154.96 ± 14.34 −33.06 ± 14.83 −74.08 ± 14.53 −52.79 ± 14.83 −79.42 ± 20.37
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detailed investigation regarding mutation-induced alterations
i.e. disturbance in interaction network, within the protein
before the ligation with identified hits, as not pursued, repre-
senting another avenue for research.

4. Conclusion

A structure-based pharmacophore approach was used in this
study to identify possible ALKmutant inhibitors. The pharma-
cophore model was validated using specificity and sensitivity
measurements, and it could successfully identify compounds
from our in-house database that shared similar pharmacopho-
ric features. Molecular docking and interaction analysis helped
narrow down the list of potential hits based on the binding
energy and the interactions between proteins and ligands.
The evaluation of the stability of protein–ligand complexes
was conducted through RMSD and RMSF analyses after MD
simulation, which provided insight into the capacity of the
identified compounds to bind effectively within the active
site and establish strong interactions. Overall, these findings
provide valuable insights for the development of novel inhibi-
tors targeting mutant ALK These compounds stand out among
the initial library of 14,000 small molecules, which, after
further optimisation and experimental validation, are expected
to offer promising research avenues, facilitating drug discovery
pipeline in the future.
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