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Complexity of classical dynamics of molecular systems. I. Methodology
Dmitry Nerukh, George Karvounis, and Robert C. Glen
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Methods for the calculation of complexity have been investigated as a possible alternative for the
analysis of the dynamics of molecular systems. ‘‘Computational mechanics’’ is the approach chosen
to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been
developed for symbolization of a continuous physical trajectory of a dynamic system. A method for
calculating statistical complexity has been implemented and tested on representative systems. It is
shown that the computational mechanics approach is suitable for analyzing the dynamic complexity
of molecular systems and offers new insight into the process. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1518010#
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I. INTRODUCTION

The motions of atoms and molecules in the conden
phase is so complicated that it is often considered as rand
However, when rigorously defined this motion ischaotic.
That is, the underlying dynamics of seemingly very comp
cated motion can be completely deterministic and even v
simple. There is direct evidence of the chaotic nature of m
lecular motions.1,2 The first criterion of the chaotic characte
of a dynamic process is its Lyapunov exponents. It has b
shown1,2 that biomolecular systems have positive Lyapun
exponents, which is the condition for a system to be chao
Even a simple linear triatomic molecule possesses cha
dynamics, which is rigorously proved in Ref. 3 by the ex
tence of the transversal homoclinic points in a Poincare´ map
of the system. Together with these numerical simulatio
there is experimental evidence of chaos on the microsc
level4 showing positive Lyapunov exponents of the moti
of a Brownian particle immersed in liquid.

Another distinctive feature of molecular systems is th
multiparticle nature. The dynamics of the system is made
of the motion of a large number of small, relatively simp
interacting particles. Such systems, sometimes referred t
large systems, are capable of producing very complex
namics. Their time evolution has a self-organizi
character—a qualitatively new complex behavior emer
from simple laws of interactions between the constitu
parts.5 It is also now being recognized that this type of b
havior is quite generic for the class of nonlinear chao
systems.6

Molecular systems are Hamiltonian nonlinear dynami
systems made of a large number of simply interacting pa
This, therefore, makes them potentially capable of exhibit
complex, self-organizing, emergent behavior. The divers
of physical–chemical processes from phase transitions
protein folding is a consequence of this characteristic. I
thus of great interest to study the emergent nature of mole
lar systems in more detail.

The key point in understanding emergent behavior is
find a way of analyzing the complexity of the system. T
9610021-9606/2002/117(21)/9611/7/$19.00
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complexity and, particularly, the dynamical complexity is u
timately related to self-organization and emergence. T
term ‘‘complexity’’ is loosely defined. There are many a
proaches to calculating complexity that vary considerably
their definition and implementation. Nevertheless, they
aim to estimate the same characteristic of the syst
namely, how sophisticated are the dynamical laws govern
the time evolution of the system.

In order to make complexity analysis a practical a
proach, a method for calculating complexity must be chos
It should be noted that complexity measures are mostly
plied to abstract mathematical models exhibiting chao
dynamics.7 For our purposes, however, a practical meth
for estimating the complexity of a continuous physical tr
jectory is desired. If we devise a method for calculating co
plexity quantitatively we can apply it to specific molecul
characteristics. This should then describe the key feature
the system and be a suitable descriptor of the phenom
under study.

The mathematical abstraction used to analyze comp
ity is in describing the system in terms of ‘‘symbolic dynam
ics’’; a signal is replaced by a sequence of symbols from
‘‘alphabet’’ of finite size. In the simplest case the alphab
consists of zeros and ones and ‘‘symbolization’’ become
binary coding. Even though complexity has only recen
become an active field of research it rests on such w
known approaches as Shannon entropy and Kolmogor
Chaitin algorithmic complexity.

Shannon entropy is widely used for characterizing
informational content of a signal and in fact was origina
introduced to describe the information capability of a co
munication channel.8 Its close connection with thermody
namic entropy and the theory of information makes it pop
lar in the analysis of many physical processes.9,10 The
‘‘excess entropy’’ concept11 is a step towards a quantitativ
measure of complexity. It gives a measure of the ‘‘memor
of a dynamical system thus giving an estimate of the sop
tication of the dynamical law that defines the behavior of
system. It was first introduced by Crutchfield and Packar11
1 © 2002 American Institute of Physics
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and recognized as ‘‘an effective measure of complexity’’
Grassberger.12

Kolmogorov–Chaitin~KC! complexity is the length of
the minimal program for a Universal Turing Machine whic
when run reproduces the process at hand. This is a m
ematically well-developed approach which is unfortunat
not realizable in practise. Nevertheless, it provides the fo
dation for many variations and extensions. This measur
complexity is related to Shannon entropy because they b
estimate the size of the informational description of the p
cess.

Currently a number of approaches are being develop
Among them is the ‘‘approximate entropy’’ approach,13 a
method exploring Fisher information14 and even some
‘‘simple’’ algorithms15 ~which are however open to
criticism16,17!.

One of the most valuable insights offered by the app
cation of complexity analysis is that it can reveal the mec
nism of the appearance of qualitatively new, complex beh
ior from simple elementary events, in other words,
explanation of emergent behavior in physical systems. T
set of problems also plays a significant role in evoluti
theory and is extensively developed by Kauffman.5 One of
the main postulates is that in this class of dynamical syst
which show self-organization, the ability to process inform
tion is most effective when the system is ‘‘on the edge
chaos.’’ In other words, if a system exhibits both types
dynamics: deterministic and chaotic depending on the
rameters, the richest informational content of its behavio
found for the intermediate values of the parameters.

The same ideas are present in the more formal field
nonlinear chaotic dynamics. For example, emergence ma
elucidated from an abstract map at the onset of chaos.18 This
is, however, only a hypothesis and there are doubts on
general this rule is.19

For our purposes we adopted the approach by Cru
field et al. termed ‘‘computational mechanics.’’20–23This ap-
proach combines and implements the ideas from both S
non entropy and KC algorithmic complexity theories. Here
symbolic sequence is used to reconstruct an algorithmic
tomaton that propagates the system from one state~the so-
called ‘‘causal state’’! to the next one. ‘‘Computational’’ sig-
nifies that the complexity of the system~a ‘‘statistical
complexity’’ in this case! is equal to the complexity of this
automaton. Being well developed from the formal ma
ematical point of view this approach provides a practi
algorithm for calculating the complexity of real systems.
has been applied to a number of systems, both mathema
and real physical models.22,24–26

If we are to calculate the statistical complexity of m
lecular systems we have to resolve a number of issues. M
importantly, an algorithm for converting a continuous traje
tory of the systems to a symbolic sequence should be
vised. A general solution to the generation of a symbo
representation~the concept of a generating partition! is, un-
fortunately so far applicable to only a very limited number
abstract mathematical maps.7 The other difficulty in imple-
menting the original computational mechanics methodolo
is that the reconstruction of the causal states automata is
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always straightforward and may require nontrivial metho
That is why we use, at least at the current stage of
investigation, a variation of the original Crutchfield metho
suggested by Perry and Binder.27

This paper primarily deals with a methodology for th
calculation of statistical complexity of a molecular syste
The theory, computational details and testing of the al
rithm on simple model signals is described. The accompa
ing paper,28 the application of the method to Na1 –water
classical MD simulation is discussed. In the forthcoming p
pers we will deal with more complex biochemical and oth
systems that exhibit self-organizing features.

II. THEORY

In the following symbolic dynamics is considered, i.e
the signal consists of discrete symbols assigned to disc
time steps. Let a set of symbols corresponding to each t
step t i form a sequenceS. To calculate the statistical com
plexity S is decomposed into a set of leftsi

l ~past! of length
l and rightsi

r ~future! of length r halves joined together a
time pointst i . Consider a particular left subsequences1

l and
all left subsequences equivalent to it:s2

l ands3
l . Collect a set

of all right subsequences following this unique left subs
quence~Fig. 1!. Each right subsequence has its probabil
conditioned on the particular left one: Pr(sr usi

l). The equiva-
lence relation between any two left subsequences can no
defined. Two unique left subsequencessi

l andsj
l are equiva-

lent if their right distributions are the same up to some t
erance valued : Pr(sr usi

l)5Pr(sr usj
l )1d. A set of all equiva-

lent left subsequences forms an ‘‘equivalence class.’’ T
equivalence classes have their own probabilities (Ai) equal
to the sum of probabilities of the constituent left subs
quences.

The importance of the notion of equivalence classes
that they represent the states of the system that define
dynamics at future moments—the ‘‘causal states.’’ The ti
evolution of the system can be viewed as traversing from
causal state to the other with a probability defined
Pr(sr usi

l). The set of the causal states together with the tr

FIG. 1. A schematic representation of the equivalence relations. The
~‘‘past’’ ! subsequencess1

l , s2
l , ands3

l ~all symbols on the@ tpast,t i # interval!
are the same. They lead to a distribution of right~‘‘futures’’ ! subsequences
s1

r , s2
r , ands3

r (@ t i ,t future#).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sition probabilities constitute a so-called ‘‘e-machine.’’
e-machines represent the minimal computation necessar
reproduce the dynamics of the system.

For example, a simple sequence consisting of alterna
zeros and ones has ane-machine shown in Fig. 2. Here sta
A is an equivalence class consisting of just one left sub
quence ...01010. StateB consists of a subsequence ...1010
The transition probabilities are equal to 1.0 because e
state always leads to the other.

The statistical complexity is defined as the information
size of thee-machine. The measure of this is the Shann
entropy of the causal states,

C[2(
Ai

Pr~Ai !log2 Pr~Ai !, ~1!

whereAi are causal states. In contrast to KC complexity t
measure provides a zero complexity forboth extremes—a
constant signal and a purely random process. The maxim
value of complexity lies somewhere in between these
limits.

This approach to calculating complexity gives an exte
sive opportunity for analyzing the intrinsic mechanism of t
dynamics. In particular, thee-machines can be classified b
the algorithmic languages required to construct them. Th
hierarchy represents various levels of complexity. It
suggested22 that the transition from one level to the oth
upwards in the hierarchy represents the event of emerge
Thus, the analysis of the reconstructede-machine is a key
point in studying dynamical complexity of the system.

In this work we use a simplified version of statistic
complexity due to Perry and Binder27 denoted ‘‘finite statis-
tical complexity.’’ It avoids the explicit reconstruction of th
e-machine but converges to statistical complexity. This,
the one hand, simplifies the algorithm and makes it m
robust, however on the other it lacks the detailed explana
power of the original approach.

The approach considers substrings of lengthl for the left
subsequence and of lengthr for the right. It then estimates
the occurrence frequencies of the left subsequencesP(xl)
and for eachxl the occurrence frequencies of the right su
sequencesP(xr uxl). Then the equivalence classes$xl% i are
formed by comparing the distributions of the right string
Finally the finite statistical complexity is calculated by th
formula,

C52(
i

P~$xl% i !log2 P~$xl% i !, ~2!

whereP($xl% i) is a probability of each equivalence class.

FIG. 2. e-machine reconstruction.A and B are two causal states of th
system. Numbers on the arrows show the transition probability between
states.
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III. COMPUTING FINITE STATISTICAL COMPLEXITY

A. Signal symbolization

The crucial part in the implementation of the method
ogy is converting a continuous real signal into a sequenc
symbols, ‘‘symbolization.’’ There is a review on
symbolization29 reflecting the current state of affairs in th
field. The rigorous approach to symbolization is to use
‘‘generating partition.’’7 There is a mathematical foundatio
for this type of encoding of the trajectory.30 Unfortunately,
there is no practical algorithm for constructing a generat
partition for an arbitraryn-dimensional signal. The genera
ing partitions are known for some, low dimensional system
for example the Henon map.31 Various criteria for partition-
ing are discussed in Ref. 32. For practical applications
partitioning is often chosen arbitrarily. This, however, m
lead to erroneous conclusions about the dynamics of the
tem. Some of the problems arising when a misplaced bin
partition is used are discussed in Ref. 33.

We have paid special attention to the symbolization
molecular trajectories. Because of the lack of rigorous d
nition of a partition for a general case, we simply divide t
whole interval covered by the signal intok equal parts~Fig.
3! and investigate the behavior of the algorithm at differe
values ofk. We also devised a special approach for gene
ing the symbols based on the given partition.

The one-dimensional case is shown in Fig. 3. The sig
is considered as a continuous function represented by
dots at the discrete experimental data points. The alphab
constructed by the partitioning and fork53, consists of three
symbols: $s0 ,s1 ,s2% ~Fig. 3!. The resulting symbolic se
quence is shown at the bottom row in Fig. 3. The algorith
for the symbolization is as follows:

~1! Find the intersection points of a signal with the partitio
lines (t1 , t2 , t3) @take the first and the last points of th
signal as well (t0 , t4)#.

~2! Find the smallest interval in timeDt ~which is equal to
the length of@ t0 ,t1# for this example!.

he

FIG. 3. Symbolization of a continuous signal. Only discrete data points~the
dots! representing the continuous signal~the solid curve! are available.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~3! For each interval find the number of symbols produc
by this interval by dividing its length byDt.

~4! Form the final sequence by choosing the symbol fr
the partition space where the signal falls between
intersection points~Fig. 3!.

It is important to consider the intersection pointst i as time
interval boundaries and not the data points themselves.
erwise, if the data points do not fall in the points of natu
periodicity an artificial randomness is introduced into t
final symbolic sequence. Also, generating a sequence o
peating symbols like the ones on the@ t1 ,t2# interval pre-
serves more information from the original signal.

In choosingDt some tolerance was used andDt was not
allowed to be less than this tolerance~typically 10% of the
time step!. Also, when comparing different signals the sam
value ofDt was used for all signals.

A continuous trajectory is normally not available sin
we have only a discrete set of experimental points there
an interpolation must be used. We used a simple linear in
polation as shown in Fig. 4. A higher order scheme may
introduced if necessary. However, if the points are de
enough the linear approximation does not introduce a sig
cant error into the final result.

The algorithm is straightforwardly generalized to t
n-dimensional case. The partition lines are now hyperpla
and the signal is a curve inn11 dimensional space~Fig. 5!.
Also, there arekn number of symbols in the alphabet, whe
k is the number of partitions. The intersection pointst i are
the time coordinates of the intersections of the hyperpla
with the signal curve.

B. Symbolic dynamics

The algorithm for computing the finite statistical com
plexity follows the method described in Ref. 27:

~1! Go through all left subsequences of lengthl (xl) and the

FIG. 4. Linear interpolation for finding the intersection points of the sig
and the partition lines.t is a true intersection point,t8 is the one used in the
calculation.
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following right subsequences of lengthr (xr). Calculate
the occurrence frequencies for the left subsequen
P(xl).

~2! Collect all unique left subsequencesxi
l . Form the sets of

right subsequences$xr% i for each left subsequence. Fo
each set$xr% i calculate the occurrence frequencies
each right subsequence within the set making them
distributions.

~3! Form the equivalence classes by comparing the ri
subsequence distributions. If they are equal, add the
responding left subsequences to the same equivale
class.

FIG. 6. The definition of the equivalence of two distributions of symbo
sequences. The probabilities number 2 and 8 from distribution 1 are sm
than the maximal difference between the equal sequencesDP. Thus, these
two distributions are equal.

l

FIG. 5. Two-dimensional signal symbolization. The dots and the stra
lines joining them represent the continuous signal. The time interval bou
aries (t1 ,t2) are found by projecting the points of intersection of the sign
with the partitioning planes. The symbolic alphabet consists of four sy
bols: s00 ,s01 ,s10 ,s11 .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~4! Calculate the equivalence class probabilities as a sum
the occurrence frequencies of the left subsequen
P(xl) belonging to the class.

~5! The finite statistical complexity is calculated by the fo
mula ~2!.

The important point is the criteria for comparing the dist
butions of right subsequences~step 3!. According to the
original approach by Crutchfield, they must be equal in
statistical sense up to a toleranced. In our algorithm we
adopted rather loose criterion. First, the distributions sho
have common sequences. Second, the unequal ones s
have a probability less then the biggest difference betw
the probabilities of the equal ones~Fig. 6!.

Special attention must be paid to the cases of sign
cantly random processes. Figure 7 shows a case o
6-symbol alphabet and left and right subsequences of le

FIG. 7. An example of the left subsequence~upper panel! and following
right subsequences~lower panel! probabilities. The subsequences length
equal to 2 and the alphabet consists of 6 symbols~see text!.

FIG. 8. Test signals. From bottom to top:

f015H t22i , i 5¯21,0,1,2̄ for tP@2i ,2i 11#

2t12i , i 5¯21,0,1,2̄ for tP@2i 21,2i #
;

f s5sin(t);f2s5sin(at)1sin(bt); f 5s5( i 51
5 sin(ait); f r : straight lines joining

the points@ i ,r #, where i 5¯21,0,1,2... andr are random number in the
interval @0,3#.
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2. The upper panel contains the probabilities of the left s
sequences and the bottom one those for the right. The p
ability of occurrence of a particular left subsequence~upper
panel! is shown with the corresponding right subsequen
~lower panel!. For a purely random process each left sub
quence leads to all possible right subsequences with the s
probability, so that the lower panel in Fig. 7 is covered w
bars of the same height. This means that thee-machine con-
sists of a single causal state which is visited an infinite nu
ber of times.

In reality, however, the finite number of subsequenc
leads to a situation in which the distribution on the low
panel is not uniform or some subsequences are even c
pletely missing. This will make the algorithm produce arti
cial causal states and, consequently, increase the proba
of those states. To avoid this, a sufficient set of subseque
must be accumulated, in other words, the original sig
must be long enough to provide the correct approximation
the right subsequences distributions. For an alphabet om
symbols and right subsequences of lengthr it needs at least
mr symbols to cover all possible right subsequences. Ke
ing in mind the exponential dependence of the length of
alphabet on the dimensionality of the signal it is obvious t
to get a correct zero value complexity for a purely rando
signal we need a very long data stream, especially for hi
dimensional cases.

In the worst situation, when only one right sequen
corresponds to each left sequence, we havemr equivalence
classes each with probabilitymr . The formula for the com-
plexity becomes

C52(
i 51

mr

1

mr log2

1

mr 5r log2 m, ~3!

and this indicates that for a large number of partitions
complexity is log2 m dependent. It is worth stressing that th
is only true for signals with a random component. For det
ministic signals the logarithmic dependence may arise
another reason discussed in the next section.

FIG. 9. The dependence of the complexity on the number of partitions
various length of left and right subsequences for thef 01 test signal.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. RESULTS AND DISCUSSION

We tested the algorithm on the model signals shown
Fig. 8. Once the procedure for comparing the right seque
distributions is established the only parameters the algori
depends on are the length of the subsequencesl ~we assumed
the lengths of left and right subsequences are equal in
calculations! and the number of partitionsk. We investigated
the complexity of the test signals at various values of b
these parameters.

The expected values of complexity are in this order:
lowest for the random signal, thenf 01, f s , f 2s , and the most
complex f 5s .

Apparently, the more partitions that are used for symb
ization, the more information is encoded in the symbo
sequence and the higher complexity we obtain. There is
other reason for increasing complexity withk. It can be
proven that Shannon entropy has2 log2 D dependence in the
D→0 limit, whereD is a discretisation interval.34 As far as
statistical complexity is a Shannon entropy measure, its li
should also have logarithmic dependence.

Dependence on the lengthl is important because, ac
cording to Ref. 27, finite statistical complexity converges

FIG. 10. Same as Fig. 9 but forf s .

FIG. 11. Same as Fig. 9 but forf 2s .
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statistical complexity with increasingl . Therefore, we have
to make sure that our results converge with increasingl .

Thek-dependence of the complexity of the test functio
at variousl are shown in Figs. 9–12. The logarithm of th
number of partitions (k) is also included for comparison.

For nonrandom signals there is a clear convergence w
increasingl . A very simple function likef 01 does not exhibit
any dependence onl which means that the correct dynami
is captured for the shortest possible left and right substrin
those of length 2.

The sine function displays an interesting feature: w
increasingl the deviation from the converged value sta
appearing at higher values ofk. In other words it requires
more information~the higherk the more information is trans
ferred from the continuous signal to the symbolic sequen!
to reach the true complexity as we increase the length of
time behavior that is analyzed.

The convergence for the sum of sine functions~not
shown heref 5s graph is very similar tof 2s) is obvious even
though the deviation from the logarithmic dependence
come significant at high values ofl . The nature of this is not
clear, yet a possible reason is that a nonoptimal condition
comparison of right sequence distributions has been cho
It is worth stressing that for nonrandom signals the logar
mic dependence onk comes from the natural limit of the
Shannon entropy and not from the finiteness of the d
stream@Eq. ~3!#.

The situation with the random signal is somewhat mo
complicated. The curves converge for low values ofl . For
lengthsl higher then 5 the curves show high, divergent v
ues of complexity that we attribute to the lack of statistic

FIG. 12. Same as Fig. 9 but forf r .

TABLE I. Finite statistical complexities of the test functions.

Function Finite statistical complexity

f r 6.14
f 01 6.88
f s 7.34
f 2s 10.88
f 5s 11.07
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9617J. Chem. Phys., Vol. 117, No. 21, 1 December 2002 Complexity of dynamics of molecular systems. I
For small l , however, all the curves converge to appro
mately the same value which is significantly different fro
the other models.

Table I summarizes the data for the test function co
plexities at k560. The converged value ofl is taken for
nonrandom functions andl 55 for the random one. The ex
pected trend in complexity values of the signals with resp
to each other is seen, i.e., the lowest is found for rand
values, thenf 01, sine and sums of sines is observed.

The difference betweenf 2s and f 5s is not very big but it
is clearly present. The small value of the difference is m
probably caused by using criteria that are not sufficien
strict for the right side sequence distributions comparison

V. CONCLUSIONS

Among the diversity of modern approaches for calcul
ing dynamical complexity, computational mechanics
Crutchfieldet al.22 promises great opportunities in the inve
tigation of emergent behavior in molecular systems. To ap
them to real molecular trajectories, an algorithm for symb
ization of a continuous trajectory has been developed. I
demonstrated that the algorithm reproduces the expected
ues of complexity for various test functions. The depende
on the number of partitioning intervalsk of a real signal is
investigated. It is shown thatk -dependence has a logarith
mic character as predicted by the theory. The approach
lows us to apply it to a real molecular system. This is p
sented in the companion paper.28 In future we plan to analyze
in more detail the various algorithms for the comparison
right sequence distributions. This will most probably affe
the resulting complexity, especially for systems with a hi
random component. It may also help to make t
k-dependence of the complexity smoother.

Finally, it will be very interesting to reconstruct th
e-machine implicitly and study a hierarchy of the algorithm
languages, getting a deeper understanding of the eme
and information processing nature of physical trajector
This direction of research is currently in progress in o
group.
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