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Complexity of classical dynamics of molecular systems. |. Methodology
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Methods for the calculation of complexity have been investigated as a possible alternative for the
analysis of the dynamics of molecular systems. “Computational mechanics” is the approach chosen
to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been
developed for symbolization of a continuous physical trajectory of a dynamic system. A method for
calculating statistical complexity has been implemented and tested on representative systems. It is
shown that the computational mechanics approach is suitable for analyzing the dynamic complexity
of molecular systems and offers new insight into the process.20@2 American Institute of
Physics. [DOI: 10.1063/1.1518010

I. INTRODUCTION complexity and, particularly, the dynamical complexity is ul-
timately related to self-organization and emergence. The

The motions of atoms and molecules in the condense¢erm “complexity” is loosely defined. There are many ap-
phase is so complicated that it is often considered as randorgroaches to calculating complexity that vary considerably in
However, when rigorously defined this motion ésaotic their definition and implementation. Nevertheless, they all
That is, the underlying dynamics of seemingly very compli-agim to estimate the same characteristic of the system,

cated motion can be completely deterministic and even verjamely, how sophisticated are the dynamical laws governing
simple. There is direct evidence of the chaotic nature of motne time evolution of the system.

lecular motions-? The first criterion of the chaotic character In order to make complexity analysis a practical ap-

of a dynamic process is its Lyapunov exponents. It has beegrqach, 3 method for calculating complexity must be chosen.
showrt? that biomolecular systems have positive Lyapunovit should be noted that complexity measures are mostly ap-
exponents, which is the condition for a system to be chaoliCyjieq to apstract mathematical models exhibiting chaotic

Even a simple linear triatomic molecule possesses Chao“&ynamics7 For our purposes, however, a practical method

dynamics, which is rigorously prqved n Rgf. 3 by_,the EXIS~for estimating the complexity of a continuous physical tra-
tence of the transversal homoclinic points in a Poincaap .

. : . . jectory is desired. If we devise a method for calculating com-
of the system. Together with these numerical S|mulat|on§E

: . . . plexity quantitatively we can apply it to specific molecular
there is experimental evidence of chaos on the microscopi - : )
: . —Characteristics. This should then describe the key features of
level showing positive Lyapunov exponents of the motion

. R L the system and be a suitable descriptor of the phenomena
of a Brownian particle immersed in liquid.
. under study.

Another distinctive feature of molecular systems is their The mathematical abstraction used to analvze complex
multiparticle nature. The dynamics of the system is made UP s in describing th tem in t - byl' d b
of the motion of a large number of small, relatively simple ' y’|,s I describing the system in terms of “symbolic dynam-

; a signal is replaced by a sequence of symbols from an

interacting particles. Such systems, sometimes referred to &S

large systems, are capable of producing very complex dy‘jalphabet” of finite size. In the simplest case the alphabet

namics. Their time evoluton has a self-organizingconS'StS of zeros and ones and “symbolization” becomes a

character—a qualitatively new complex behavior emergefinary coding. Even though complexity has only recently
from simple laws of interactions between the constituenP€COme an active field of research it rests on such well-
parts® It is also now being recognized that this type of be-Known approaches as Shannon entropy and Kolmogorov—
havior is quite generic for the class of nonlinear chaoticChaitin algorithmic complexity.
systems. Shannon entropy is widely used for characterizing the
Molecular systems are Hamiltonian nonlinear dynamicafnformational content of a signal and in fact was originally
systems made of a large number of simply interacting partdhtroduced to describe the information capability of a com-
This, therefore, makes them potentially capable of exhibitingnunication channél.lts close connection with thermody-
complex, self-organizing, emergent behavior. The diversitynamic entropy and the theory of information makes it popu-
of physical—-chemical processes from phase transitions tir in the analysis of many physical proces$&.The
protein folding is a consequence of this characteristic. It is'excess entropy” concept is a step towards a quantitative
thus of great interest to study the emergent nature of molecuneasure of complexity. It gives a measure of the “memory”
lar systems in more detail. of a dynamical system thus giving an estimate of the sophis-
The key point in understanding emergent behavior is tdication of the dynamical law that defines the behavior of the
find a way of analyzing the complexity of the system. Thesystem. It was first introduced by Crutchfield and PacKard
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and recognized as “an effective measure of complexity” by

(2}

°

Grassbergef? q
Kolmogorov—Chaitin(KC) complexity is the length of > J '6

the minimal program for a Universal Turing Machine which
when run reproduces the process at hand. This is a math-
ematically well-developed approach which is unfortunately
not realizable in practise. Nevertheless, it provides the foun- s s s s

. . . . 1 r 2
dation for many variations and extensions. This measure of 5t ﬁ _____ f/
complexity is related to Shannon entropy because they both
estimate the size of the informational description of the pro-
cess.

Currently a number of approaches are being developed. !past
Among them IS. the _appro_X|mate ?ntmpy apprOd&a FIG. 1. A schematic representation of the equivalence relations. The left
mgthod explor_lng Fisher _mformatlb”n and even some (“past’) subsequences, , s, ands} (all symbols on thét,ue, ;] interva)
“simple” algorlthmsls (which are however open tO are the same. They lead to a distribution of rigtittures”) subsequences
criticismlﬁ’”). sh, Sy, ands ([t ,tuwrel) -

One of the most valuable insights offered by the appli-
cation of complexity analysis is that it can reveal the mecha-

nism of the appearance of qualitatively new, complex behavyyays straightforward and may require nontrivial methods.

ior from simple elementary events, in other words, antpa; js why we use, at least at the current stage of this
explanation of emergent behavior in physical systems. Thig,estigation, a variation of the original Crutchfield method
set of problems also plays a significant role in evolutlonsuggested by Perry and Bindér.

theory and is extensively developed by Kauffrﬁa_@ne of This paper primarily deals with a methodology for the
the main postulates is that in this class of dynamical systemgycylation of statistical complexity of a molecular system.
v_vh|c_h show self-orgamzatlon, the ability t_o process informa-tpe theory, computational details and testing of the algo-
tion is most effective when the system is “on the edge Ofyjthm on simple model signals is described. The accompany-
chaos._ In other vx_/o_rd‘_s, if a system exhibits _both types Ofing paper® the application of the method to Nawater
dynamics: deterministic and chaotic depending on the pag|assical MD simulation is discussed. In the forthcoming pa-

rameters, the richest informational content of its behavior igyers we will deal with more complex biochemical and other
found for the intermediate values of the parameters. systems that exhibit self-organizing features.

The same ideas are present in the more formal field of
nonlinear chaotic dynamics. For example, emergence may be
elucidated from an abstract map at the onset of ch&dkis Il THEORY
is, however, only a hypothesis and there are doubts on how
general this rule i8? In the following symbolic dynamics is considered, i.e.,

For our purposes we adopted the approach by Crutchthe signal consists of discrete symbols assigned to discrete
field et al.termed “computational mechanics®=?*This ap-  time steps. Let a set of symbols corresponding to each time
proach combines and implements the ideas from both Shastept; form a sequenc&. To calculate the statistical com-
non entropy and KC algorithmic complexity theories. Here aplexity S is decomposed into a set of Iaft (pas} of length
symbolic sequence is used to reconstruct an algorithmic au-and rights (future) of lengthr halves joined together at
tomaton that propagates the system from one dthgso- time pointst; . Consider a particular left subsequer&i_:,aand
called “causal state)'to the next one. “Computational” sig- all left subsequences equivalent tosk:ands's. Collect a set
nifies that the complexity of the systerfa “statistical of all right subsequences following this unique left subse-
complexity” in this case is equal to the complexity of this quence(Fig. 1). Each right subsequence has its probability
automaton. Being well developed from the formal math-conditioned on the particular left one: Bfs!). The equiva-
ematical point of view this approach provides a practicallence relation between any two left subsequences can now be
algorithm for calculating the complexity of real systems. It defined. Two unique left subsequeneéands} are equiva-
has been applied to a number of systems, both mathematickant if their right distributions are the same up to some tol-
and real physical modefg:24-26 erance value: Pr(s'|s|) = Pr(s'|s;) + 8. A set of all equiva-

If we are to calculate the statistical complexity of mo- lent left subsequences forms an “equivalence class.” The
lecular systems we have to resolve a number of issues. Mostuivalence classes have their own probabilitidg equal
importantly, an algorithm for converting a continuous trajec-to the sum of probabilities of the constituent left subse-
tory of the systems to a symbolic sequence should be deguences.
vised. A general solution to the generation of a symbolic  The importance of the notion of equivalence classes is
representatiorithe concept of a generating partitjois, un-  that they represent the states of the system that define the
fortunately so far applicable to only a very limited number of dynamics at future moments—the “causal states.” The time
abstract mathematical mapJhe other difficulty in imple-  evolution of the system can be viewed as traversing from one
menting the original computational mechanics methodologyausal state to the other with a probability defined by
is that the reconstruction of the causal states automata is nBlr(sr|s!). The set of the causal states together with the tran-

P Sfuture time
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FIG. 2. emachine reconstructiorA and B are two causal states of the
system. Numbers on the arrows show the transition probability between the
states. e e

signal

sition probabilities constitute a so-callede-fnachine.”
e-machines represent the minimal computation necessary to T
reproduce the dynamics of the system. -
For example, a simple sequence consisting of alternating ‘
S1

— — e e i e

t

P deodo g f

TR

s,8,5,5,8,5, S, S, §,S,8,5,S,S,

1
zeros and ones has amachine shown in Fig. 2. Here state £
A is an equivalence class consisting of just one left subse-
quence ...01010. Stafe consists of a subsequence ...10101. G, 3. symbolization of a continuous signal. Only discrete data péines
The transition probabilities are equal to 1.0 because eactmts representing the continuous sigritie solid curve are available.
state always leads to the other.

The statistical complexity is defined as the informational
size of thee-machine. The measure of this is the Shannorill. COMPUTING FINITE STATISTICAL COMPLEXITY
entropy of the causal states,

2 T2 "2727272 7272

A. Signal symbolization

=-> Pr(A)log, Pr(A), (1) The crucial part in the implementation of the methodol-
Ay ogy is converting a continuous real signal into a sequence of
whereA, are causal states. In contrast to KC complexity thisSYmbols, .“s%mbohzatmn." There is a review on
measure provides a zero complexity footh extremes—a symbolizatior}® reflecting the current state of affairs in this

constant signal and a purely random process. The maximuff!d- The rigorous approach to symbolization is to use a

value of complexity lies somewhere in between these two generating partition.”” There is a mathematical foundation

limits. for this type of encoding of the trajectoty.Unfortunately,

This approach to calculating complexity gives an exten-ther_e_ is no practica_ll aIgori'Fhm fo_r cons’Fructing a generating
sive opportunity for analyzing the intrinsic mechanism of thePartition for an arbitranyn-dimensional signal. The generat-
dynamics. In particular, the-machines can be classified by N9 partitions are known for some, low dimensional systems,
the algorithmic languages required to construct them. Theif0" €xample the Henon ma.Various criteria for partition-
hierarchy represents various levels of complexity. It isind are discussed in Ref. 32. For practical applications the
suggested that the transition from one level to the other Partitioning is often chosen arbitrarily. This, however, may
upwards in the hierarchy represents the event of emergenclad to erroneous conclusions about the dynamics of the sys-
Thus, the analysis of the reconstructethachine is a key (€M. Some of the problems arising when a misplaced binary
point in studying dynamical complexity of the system. partition is used are discussed in Ref. 33. o

In this work we use a simplified version of statistical ~ Ve have paid special attention to the symbolization of
complexity due to Perry and Binddrdenoted *finite statis- molecular trajectories. Because of the lack of rigorous defi-
tical complexity.” It avoids the explicit reconstruction of the Nition of a partition for a general case, we simply divide the
e-machine but converges to statistical complexity. This, onVhole interval covered by the signal inkoequal partsFig.
the one hand, simplifies the algorithm and makes it more) and investigate the bghawor of the algorithm at different
robust, however on the other it lacks the detailed explanatoryfalues ofk. We also devised a special approach for generat-
power of the original approach. ing the symbols based on the given partition.

The approach considers substrings of lerigibr the left The. one—dimensionall case is shovyn in Fig. 3. The signal
subsequence and of lengthfor the right. It then estimates IS considered as a continuous function represented by the
the occurrence frequencies of the left subsequeiR(es) dots at the discrete experimental data points. The alphabet is
and for eachx; the occurrence frequencies of the right sub-constructed by the partitioning and flor- 3, consists of three
sequence®(x,|x). Then the equivalence classps}; are ~ SYMbOIS:{Sy.S1,S;} (Fig. 3. The resulting symbolic se-
formed by comparing the distributions of the right strings. dUénce is shown at the bottom row in Fig. 3. The algorithm
Finally the finite statistical complexity is calculated by the for the symbolization is as follows:

formula, (1) Find the intersection points of a signal with the partition
lines (1, t,, t3) [take the first and the last points of the
C=—2 P{x})log, P({x}1), 2 signal as well {p, t4)].
! (2) Find the smallest interval in timAt (which is equal to
whereP({x};) is a probability of each equivalence class. the length of[ ty,t,] for this example
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FIG. 4. Linear interpolation for finding the intersection points of the signal
and the partition line<. is a true intersection point, is the one used in the
calculation.

Soo Sg1

FIG. 5. Two-dimensional signal symbolization. The dots and the straight
lines joining them represent the continuous signal. The time interval bound-
aries 4,t,) are found by projecting the points of intersection of the signal
with the partitioning planes. The symbolic alphabet consists of four sym-
bols: sq49,S01,510,S11 -

(3) For each interval find the number of symbols produced

by this interval by dividing its length byt.
(4) Form the final sequence by choosing the symbol from

the partition space where the signal falls between the following right subsequences of length(x"). Calculate
intersection pointgFig. 3. the occurrence frequencies for the left subsequences

P(x').
It is important to consider the intersection poitss time (2 Collect all unique left subsequences Form the sets of
interval boundaries and not the data points themselves. Oth- right subsequencex'}; for each left subsequence. For
erwise, if the data points do not fall in the points of natural ~ €ach set{x}; calculate the occurrence frequencies of
periodicity an artificial randomness is introduced into the ~ €ach right subsequence within the set making them the
final symbolic sequence. Also, generating a sequence of re- distributions. _ _
peating symbols like the ones on thg,t,] interval pre- 3) Form the equn_/alence classes by comparing the right
serves more information from the original signal. subseqqence distributions. If they are equal, add Fhe cor-
In choosingAt some tolerance was used afitiwas not responding left subsequences to the same equivalence

allowed to be less than this tolerang@gpically 10% of the class.
time step. Also, when comparing different signals the same
value of At was used for all signals.

A continuous trajectory is normally not available since
we have only a discrete set of experimental points therefore . T dibutian 1
an interpolation must be used. We used a simple linear inter- [ distribution 2
polation as shown in Fig. 4. A higher order scheme may be
introduced if necessary. However, if the points are dense
enough the linear approximation does not introduce a signifi-
cant error into the final result.

The algorithm is straightforwardly generalized to the
n-dimensional case. The partition lines are now hyperplanes
and the signal is a curve im+ 1 dimensional spacé-ig. 5).
Also, there ar&k" number of symbols in the alphabet, where
k is the number of partitions. The intersection poihtsre H
the time coordinates of the intersections of the hyperplanes 0
with the signal curve.

AP{ ||

probability

=)

0 1 2 3 4 5 6 7 8 9 10
right sequence index
B. Symbolic dynamics

The algorithm for computing the finite statistical com- FiG. 6. The definition of the equivalence of two distributions of symbolic

plexity follows the method described in Ref. 27: sequences. The probabilities number 2 and 8 from distribution 1 are smaller
| than the maximal difference between the equal sequeh&esThus, these
(1) Go through all left subsequences of lengttx') and the  two distributions are equal.
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FIG. 7. An example of the left subsequen@gper pangland following  FiG. 9. The dependence of the complexity on the number of partitions for
right subsequencegower panel probabilities. The subsequences length is yarious length of left and right subsequences for figetest signal.
equal to 2 and the alphabet consists of 6 symete texk

(4) Calculate the equivalence class probabilities as a sum i The upper panel contains the probabilities of the left sub-
the occurrence frequencies of the left subsequence¥€duences and the bottom one those for the right. The prob-

P(x') belonging to the class. ability of occurrence of a particular left subsequefeeper
(5) The finite statistical complexity is calculated by the for- Pane) is shown with the corresponding right subsequences
mula (2). (lower pane). For a purely random process each left subse-

quence leads to all possible right subsequences with the same

The important point is the criteria for comparing the distri- probability, so that the lower panel in Fig. 7 is covered with
butions of right subsequencéstep 3. According to the bars of the same height. This means thatéimachine con-
original approach by Crutchfield, they must be equal in thesists of a single causal state which is visited an infinite num-
statistical sense up to a toleranéeIn our algorithm we  ber of times. .
adopted rather loose criterion. First, the distributions should In reality, however, the finite number of subsequences
have common sequences. Second, the unequal ones sholf@ds to a situation in which the distribution on the lower
have a probability less then the biggest difference betweepanel is not uniform or some subsequences are even com-
the probabilities of the equal onéBig. 6). pletely missing. This will make the algorithm produce artifi-

Special attention must be paid to the cases of significial causal states and, consequently, increase the probability
cantly random processes. Figure 7 shows a case of @f those states. To avoid this, a sufficient set of subsequences
6-symbol alphabet and left and right subsequences of lengtiust be accumulated, in other words, the original signal
must be long enough to provide the correct approximation of
the right subsequences distributions. For an alphaben of
symbols and right subsequences of lengihneeds at least

181 m" symbols to cover all possible right subsequences. Keep-
/\/\/\/\/\/\_f_\/\[w/\//\—/\/ ing in mind the exponential dependence of the length of the

15 alphabet on the dimensionality of the signal it is obvious that
to get a correct zero value complexity for a purely random
12 signal we need a very long data stream, especially for high-

dimensional cases.
In the worst situation, when only one right sequence

corresponds to each left sequence, we havequivalence
G'W\WV\/\W classes each with probability. The formula for the com-
plexity becomes

r

m
; ™ P % p P % C=- El
.

signal

1 1
71002 =1 log; m, 3

time
FIG. 8. Test signals. From bottom to top: L .
t— 2i gi=---—10 12+ for tpe[2i 2i+1] and this indicates that for a large number of partitions the
01=[ t+2" _ 1’0’1’2 ot [2_' 13’ complexity is log m dependent. It is worth stressing that this
Cta2i e . i— ) : .
TN o ) e NN is only true for signals with a random component. For deter-
fs=sin();f,s=sin@t)+sin(t); fss==7_; sin@t); f, : straight lines joining L . . . .
the points[i,r], wherei=+-—10,1,2... and are random number in the Ministic signals t_he IOga”t_hm|C dependen_ce may arise for
interval[0,3]. another reason discussed in the next section.
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FIG. 10. Same as Fig. 9 but fdg. FIG. 12. Same as Fig. 9 but fdf .
IV. RESULTS AND DISCUSSION statistical complexity with increasinly Therefore, we have

) ) _to make sure that our results converge with increating

~ We tested the algorithm on the model signals shown in  the_dependence of the complexity of the test functions
Fig. 8. Once the procedure for comparing the right sequencg yariousl are shown in Figs. 9—12. The logarithm of the
distributions is established the only parameters the algorithy ,mper of partitionsK) is also included for comparison.
depends on are the length of the subsequentes assumed For nonrandom signals there is a clear convergence with
the lengths of left and right subsequences are equal in aj,creasing . A very simple function likef ; does not exhibit
calculation$ gnd the number_ of partltloﬂe_We investigated any dependence drwhich means that the correct dynamics
the complexity of the test signals at various values of bothg cantured for the shortest possible left and right substrings,
these parameters. _ _ _ those of length 2.

The expected values of complexity are in this order: the  the sine function displays an interesting feature: with
lowest for the random signal, thegy, fs, f2s, and the most  jncreasingl the deviation from the converged value starts
complexfss. B appearing at higher values &f In other words it requires
~ Apparently, the more partitions that are used for symbolsy e informatior(the highetk the more information is trans-
ization, the more information is encoded in the symbolictarred from the continuous signal to the symbolic sequence

sequence and the higher complexity we obtain. There is any reach the true complexity as we increase the length of the
other reason for increasing complexity with It can be  {ime pehavior that is analyzed.

proven that Shannon entropy hadog, A dependence in the The convergence for the sum of sine functiofmot
Ago _I|m|t, Where_A is a discretisation intervaf: As far_as_ 'shown heré s, graph is very similar td,.) is obvious even
statistical complexity is a Shannon entropy measure, its I'm'Ehough the deviation from the logarithmic dependence be-
should also have logarithmic dependence. come significant at high values hf The nature of this is not
Dependence on the lengthis important because, ac- gjear, yet a possible reason is that a nonoptimal condition for
cording to Ref. 27, finite statistical complexity converges t0.omparison of right sequence distributions has been chosen.
It is worth stressing that for nonrandom signals the logarith-
mic dependence ok comes from the natural limit of the

Shannon entropy and not from the finiteness of the data
10 stream[Eq. (3)].

The situation with the random signal is somewhat more
complicated. The curves converge for low valued .ofor
lengthsl higher then 5 the curves show high, divergent val-

o 5 ues of complexity that we attribute to the lack of statistics.
TABLE I. Finite statistical complexities of the test functions.
o} Function Finite statistical complexity
0 20 20 60 80 fe 6.14
K for 6.88
—p—|=r=2 —o0—|=r=3 —a—|=r=4 —o—|=r=5 fs 7.34
—x—[=r=8 —+—|=r=15 —x—|=r=25 —+—I|=r=40 - - - log2(k) fos 10.88
fos 11.07

FIG. 11. Same as Fig. 9 but fdps .

Downloaded 13 Nov 2002 to 131.111.121.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 21, 1 December 2002 Complexity of dynamics of molecular systems. | 9617

For smalll, however, all the curves converge to approxi- *M. Braxenthaler, R. Unger, D. Auerbach, J.A. Given, and J. Moult, Pro-
mately the same value which is significantly different from teins: Struct,, Funct,, Genels, 417 (1997
the other models Huai-bei Zhou, J. Rhys. Cherh00, 8_101(1996.
T . 3T. Rage, A. Neumaier, and C. Schlier, Phys. Rel(E2682(1994.

Table | summarizes the data for the test function com-sg Gaspard, M.E. Briggs, M.K. Francis, J.V. Sengers, R.W. Gammon, J.R.
plexities atk=60. The converged value df is taken for Dorfman, and R.V. Calabrese, Natuteondon 394, 865 (1998.
nonrandom functions anid=5 for the random one. The ex- SSA. Kauffman,The Origins of Order: Self-Organization and Selection in

: : : : Evolution (Oxford University Press, New York, 1983
peCted trend in compIeX|ty values of the S|gnals with reSpeCJ[‘SJ.H. Holland Emergence: From Chaos to Ordédxford University Press,

to each other is seen, i.e., the lowest is found for random yey vork, 1998.
values, therfy;, sine and sums of sines is observed. "R. Badii and A. Politi,Complexity: Hierarchical structures and Scaling in

The difference betweefy, andfs is not very big but it Physics(Cambridge University Press, Cambridge, 1999

8
. . . C.E. Shannon, Bell Syst. Tech. 27, 379(1948.
is clearly present. The small value of the difference is mOSth. Baierlein, Atoms and Information Theory: An Introduction to Statistical

prqbably cau_sed by using criteria. thgt are not suffigiently Mechanics(Freeman, New York, 1971

strict for the right side sequence distributions comparison. '°H.S. Robertson Statistical Thermophysic¢Prentice—Hall, Englewood
Cliffs, 1993.

11J3.P. Crutchfield and N.H. Packard, Evolution of Order and Chagsd-

V. CONCLUSIONS ited by H. Haken(Springer-Verlag, Berlin, 1982pp. 215-227.

. . 12
Among the diversity of modern approaches for calculat-lsg- girssjsegﬁgbgnt-lfb(Tlh9e905;. Phgs, 907 (1986.
ing dynamical complexity, computational mechanics bywp \; ginder phy's_ Rev. B1 'R33o3(2000.

Crutchfieldet al?? promises great opportunities in the inves- 153.s. shiner, M. Davison, and P.T. Landsberg, Phys. ReB9E1459
tigation of emergent behavior in molecular systems. To apply (1999.

. . ? 16 _ ;
them to real molecular trajectories, an algorithm for symbol-,,~--M- Binder and N. Perry, Phys. Rev.@2, 2998(2000.

o . . .173.P. Crutchfield, D.P. Feldman, and C.R. Shalizi, Phys. Re§2,E2996
ization of a continuous trajectory has been developed. It is 0qq.

demonstrated that the algorithm reproduces the expected véakp. Lakdawala, Phys. Rev. B3, 4477(1996.

ues of complexity for various test functions. The dependenc&M. Mitchell, J.P. Crutchfield, and P.T. Hraber, Gomplexity: Metaphors,

e : : : Models, and Reality, SFI Series in the Sciences of Compledited by
_On the_ number _Of partitioning intervals of a real S|gnal I.S G. Cowan, D. Pines, and D. Melznekddison—Wesley, Reading, 1994
investigated. It is shown that -dependence has a logarith- g xix, pp. 497-513.

mic character as predicted by the theory. The approach atJ.p. Crutchfield and K. Young, Phys. Rev. L&8, 105(1989.

lows us to apply it to a real molecular system. This is pre—ﬂl»"-f- C“iFChﬁeS'C'i: |a2? :f-' YQU”?H “z_”t_fopy‘ CO;“E'EX“% ?”Fi thSicvsv of
H . nformation, udies In e Sclences o om Hagite .

sented in the companion paﬁ@ln. future we plan to analyze 71T ot B Reading1990). val. VIT, ppp_ Zzg—zeg.y

in more detail the various algorithms for the comparison of223 p, crutchfield, Physica @5, 11 (1994).

right sequence distributions. This will most probably affect®David Feldman, A brief introduction to: Information theory, excess en-

the resumng complexity, especially for systems with a high tropy and computational mechanicghttp://hornacek.coa.edu/dave/

Tutorial/index.htm] (unpublished
random component. It may also help to make the24J.E. Hanson and J.P. Crutchfield, J. Stat. PB$s1415(1992.

k-dependence of the complexity smoother. 253 E. Hanson and J.P. Crutchfield, PhysicA@3 169 (1997.

Finally, it will be very interesting to reconstruct the sz.P. Crutchfield and D.P. Feldman, Phys. ReG3=R1239(1997.
e-machine implicitly and study a hierarchy of the algorithmic ,.,N- Ei’;gk?‘”dep-k“’;rfgﬂﬂgv Z%séR%"-%’]e“nE’g}ligh%m PHZ 9618
languages, getting a deeper understanding of the emergentyyy following paper.
and information processing nature of physical trajectories?c.s. Daw and C.E.A. Finney, Rev. Sci. Instrufsubmitted.

This direction of research is currently in progress in our®®V.M. Alekseev and M.V. Yakobson, Phys. Ref5, 287 (1981).
31p, Grassberger and H. Kantz, Phys. L&ft3A, 235(1985.

group. S2pE. Rapp, C.J. Cellucci, K.E. Korslund, T.A.A. Watanabe, and M.A.
Jimenez-Montano, Phys. Rev.@, 016209(200J).
ACKNOWLEDGMENT 33E. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, PhysicalB4, 259
. (2001).
_The work is supported by the Isaac Newton Trust antsT y. cover and J.A. Thomaglements of Information Theorgwiley,
Unilever. New York, 199).

Downloaded 13 Nov 2002 to 131.111.121.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



