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A recently developed spectral method for identifying metastable states in Markov chains is used to
analyze the conformational dynamics of a four-residue peptide valine-proline-alanine-leucine. We
compare our results to empirically defined conformational states and show that the found metastable
states correctly reproduce the conformational dynamics of the system. © 2010 American Institute of
Physics. �doi:10.1063/1.3493333�

I. INTRODUCTION

Conformational dynamics is fundamental for the major-
ity of biomolecular transformations, including such well
known biochemical processes as protein folding and ligand
docking. The biomolecule passes through many intermediate
configurations on the way from the initial to the final state.
The latter two are normally well defined and can be experi-
mentally identified. This is not the case, however, for the
intermediate states that are often only possible to elucidate in
computer simulation. The information on the correct inter-
mediates, their probabilities, and the transitions between
them is necessary for the estimation of correct, experimen-
tally verifiable rates of biochemical reactions and under-
standing their mechanisms. For this reason, identifying the
conformational states and investigating their dynamics have
recently been a topic of very active development �see Refs.
1–8 for a few recent examples�. It should be noted that it is
currently impossible to predict the conformational states of a
biomolecule from its chemical structure. The entire dynami-
cal evolution of the biomolecular system �often including
water molecules explicitly� is required. However, even all
first principle information on the molecular motion on the
atomistic scale does not provide the conformational states
directly: the information has to be properly processed. More-
over, the resulting physicochemical parameters of the whole
biomolecular process strongly depend on how the states are
defined, and subtle variations in the states definition can lead
to orders of magnitude differences in the molecular charac-
teristics, especially the kinetics of the process.9,10

Significant efforts are devoted to developing ways of
grouping elementary conformations �the “microstates”� into
the intermediate metastable states �the “macrostates”�; see,
for example, the recent overview in Ref. 8. However, almost
all of them use the structural similarity in either configura-
tional or free energy space for initial clustering of the instan-
taneous molecular conformations into the microstates. This is
done before the application of the kinetic approaches to
forming the macrostates. The procedure is necessary for ac-

cumulating the data on the transitions between the mi-
crostates; however, an unbiased approach based on purely
dynamic �not structural� considerations is highly desirable.

We have recently investigated a four-residue peptide
valine-proline-alanine-leucine �VPAL� �Fig. 1�.9–11 The pep-
tide is a convenient model for studying conformational
changes as one of the smallest biomolecules having dynam-
ics that resembles the “folding” process. The system is small
enough to sample the conformational space exhaustively.
This is important for statistically correct conclusions. In our
investigations,9–11 we assigned the molecular configurations
to different states empirically by simply drawing straight
boundaries between the clusters on the Ramachandran plots
�Fig. 2�. It is therefore important to investigate how this defi-
nition of the states relates to those rigorously defined by the
time spent in each conformation and using formal analysis of
the Markov chain formed by the system’s conformations.

The most efficient techniques for identification of meta-
stable states in large Markov chains are based on the level
structure of the eigenvectors of the transition matrix whose
corresponding eigenvalues are clustered close to 1. The basic
idea of using eigenvectors to identify tightly connected sets
of states was first introduced by Fidler12 in the context of
graph partitioning. The same idea was later applied to iden-
tify metastable states in reversible Markov chains.13 In this
paper, we use a recent spectral method that can be applied to
nonreversible processes.14

We here show that the dynamics of the molecule can be
described as having several metastable conformations with
quick transitions between them. We also demonstrate that
these conformations largely coincide with our previous, em-
pirically defined ones. Moreover, the metastable conforma-
tions found in this paper reproduce more subtle features of
the dynamics that we found using completely different ap-
proach, the Markovian property of the states.11

II. IDENTIFYING METASTABLE STATES USING
SPECTRAL METHODS

Consider a Markov chain with a state vector x describing
the probability distribution over the states and a transition
matrix P such that x�t+1�= Px�t�. Assume that the number ofa�Electronic mail: svitlana@chalmers.se.
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possible states is large such that they adequately represent
the dynamics of the system. Metastable states of a Markov
chain are defined as sets of the states such that the transitions
between the states within the same metastable state are much
more likely than the transitions between the states belonging
to different metastable states. Identifying the metastable
states given a large transition matrix can be achieved using
the analysis of the eigenvalues and the eigenvectors of P.13,14

The basic idea can be understood by considering the extreme
case of a completely decoupled Markov chain with a transi-
tion matrix that can be permuted, i.e., changing the ordering
of the states, into a block diagonal form,

P = SP0S−1 = �P�1� 0 ¯

0 P�2� . . .

] ] �

� , �1�

where P0 is the original transition matrix where the rows and
columns are not ordered in such a way that the block diago-
nal structure is obvious. Each of the blocks defines a meta-
stable �in Eq. �1�, completely stable� aggregated state. The
block matrices on the diagonal, P�n�, describe the transition
probabilities within the corresponding stable state, i.e., they
reflect the fact that the stable states define independent Mar-
kov processes. The problem is now, given P0, to find the
permutation S that reveals the stable states. The set of com-
plex eigenvalues �i �also called the “spectrum” of the matrix�
and �right� eigenvectors of P, ui, such that Pui=�iui, can be
constructed directly from the different blocks P�n�. To see
this, let u�n� be an eigenvector of P�n� with an eigenvalue �.

Clearly, the vector u= �0, . . . ,0 ,u�n� ,0 , . . . ,0�T is then an ei-
genvector of P with eigenvalue �.

A general property of a Markov transition matrix is that
its largest eigenvalue, called the Perron–Frobenius eigen-
value, is 1. The corresponding right eigenvector defines the
stationary distribution, and the elements of the left eigenvec-
tor are all identical �see Ref. 14 for details�. The trivial form
of the left eigenvector with the eigenvalue 1 follows from the
conservation of probability; �kPkl=1 ∀l implies vTP=vT, if
all the elements of v are identical. Since each block P�n� is a
Markov chain, each with its own Perron–Frobenius eigen-
value, the total transition matrix P has N eigenvalues at
unity, if it contains N metastable states. The vector

v(n) = (0, . . . , 0, a, a, . . . , a, a
︸ ︷︷ ︸

block n

, 0, . . . , 0), �2�

with a constant a given by the normalization of the eigen-
vector, is a left eigenvector with eigenvalue 1. The idea of
how the eigenvectors can be used to identify the metastable
states now becomes clear, since the states in a block can be
identified by the identical nonzero elements in one of the left
Perron–Frobenius eigenvectors. One possible complication
remains. The eigenvectors corresponding to a degenerate ei-
genvalue � are not unique since any linear combination is
also an eigenvector: ��v�n1�+�v�n2��TP=���v�n1�+�v�n2��T. A
linear combination of vectors in the form in Eq. �2� has the
form

v = (a1, . . . , a1
︸ ︷︷ ︸

block 1

, a2, . . . , a2
︸ ︷︷ ︸

block 2

, . . .). �3�

Therefore, if a hidden block diagonal structure exists in
P0, the dominant left eigenvectors of P0 are of the form of
Eq. �3� but with the elements in some random order. The
states belonging to the same metastable state can therefore be
identified by identical elements in the N left Perron–
Frobenius eigenvectors �N being the number of metastable
states�. This can also be expressed as a clustering problem,
where each state is associated with a vector consisting of its
elements in the N dominant left eigenvectors of P0. For
states belonging to the same metastable state, these vectors
of length N should be the same.

The discussion so far has actually not been on meta-
stable, but completely stable, states: in Eq. �1�, there are no
transitions between the blocks. Metastability occurs when
the transition matrix can be rearranged into a block dominant
rather than block diagonal form. This means that the ele-
ments outside the blocks in P are either few, small, or both
small and few. In this case, we expect the conclusions from
the spectral analysis to hold approximately: the Perron–
Frobenius eigenvalue is almost degenerate with a cluster of
N eigenvalues close to 1, and the corresponding left eigen-
vectors show an appropriate level structure. This picture is
correct for Markov chains with symmetric or reversible tran-
sition matrices.13 However, in more general situations, the
spectral analysis is not necessarily stable to perturbations.
This follows from the fundamental fact that eigenvectors of
nonsymmetric matrices can be very sensitive to perturba-
tions, i.e., the eigenvector problem can be ill-conditioned.
This problem can however be addressed by constructing a

FIG. 1. The valine-proline-alanine-leucine �VPAL� peptide molecule.
Carbon atoms are light blue, nitrogens are dark blue, oxygens are red, and
hydrogens are gray.

FIG. 2. The Ramachandran plots for the proline �left� and alanine �right�
residues of the VPAL molecule. These plots are partitioned into the areas
marked A1, B1, A2, B2, and C2, where index 1 stands for proline and index 2
for alanine. Each combination of two areas with different indices corre-
sponds to one conformation of the peptide. This partitioning was used in
Refs. 9 and 10 for defining the metastable conformations.
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symmetric matrix with eigenvectors sharing the same level
structure as the original transition matrix �see Ref. 15 for
details�.

III. NUMERICAL SIMULATIONS

A. Obtaining molecular dynamics trajectory

We analyze the molecular dynamics trajectory of the
four-residue peptide, valine-proline-alanine-leucine �VPAL�,
shown in Fig. 1. The trajectories of the system are found
using a molecular dynamics simulation package GROMACS.16

The peptide molecule was placed in a 3�3�3 nm box with
periodic boundary conditions. The solvent was modeled by
874 simple point charge �SPC� water molecules.17 The pres-
sure and temperature were kept constant during the simula-
tion at 1 atm and 300 K using the Berensen thermostat.18 The
interactions were modeled by the forcefield 53a6 optimized
for biomolecular systems interacting with water.19–21 After
initial equilibration, the trajectory was sampled every 0.5 ps,
and the atomic positions were recorded for 220 ns, resulting
in a total of 440 000 data points. However, we tested our
methods and showed that using only 220 000 data points
obtained from 110 ns simulation did not affect the results but
appreciably speed up the calculations. Therefore, further dis-
cussion will be held for 220 000 data points.

B. Defining Markov microstates of the peptide

The configurations of the VPAL peptide are obtained in
terms of the atomic positions in Cartesian coordinates. The
peptide consists of 64 atoms in total, which produce 64�3
=192 coordinate values per time step and our 220 000 time
frames result in 42.24�106 trajectory data values. Since we
are only interested in the changes of the internal configura-
tion of the biomolecule, it is sufficient to work with the resi-
dues’ dihedral angles. We used the angles of the two central
residues, proline and alanine, because the outermost residues
are too flexible and do not define the general structure of the
peptide. Each residue is described by the two torsional
angles; thus, four angle values describe the molecular con-
figuration, which in total gives 220 000�4=880 000 trajec-
tory data values. Changes of these angles with time are
shown in Fig. 2 �the Ramachandran plots�.

Converting the continuous trajectory into a set of dis-
crete microstates has been done by partitioning the four-
dimensional hypercube describing the angular coordinates
��0,2��� �0,2��� �0,2��� �0,2��� into cells by dividing
each dimension into ten equal intervals. For our trajectory,
only 1306 of the total 104 possible microstates were non-
empty. On average, each found microstate corresponded to
170 time configurations, and the occupancy fluctuated be-
tween 1 and almost 12 000 points per microstate �Fig. 3�.

The transition probability matrix was constructed from
the trajectory by counting the number of transitions between
the microstates and normalizing the total probability to one
�Fig. 4�.

However, care must be taken at this stage since the dy-
namics of the resulting states can be non-Markovian, if the
time step is chosen too short. It was shown in Ref. 9 that the
minimum time step for the Markovian dynamics is 50 ps for

the system studied here. This value depends on the partition-
ing of the state space; therefore, we performed a test for our
partitioning that confirmed the results in Ref. 9. The count
matrix was thus constructed using the 50 ps time sampling.
The sampling rate was also varied to check for the robustness
of the Markovian property. No significant differences were
found, and we conclude that the resulting metastable states
do not depend critically on the sampling rate. The count
matrix showed that the minimum number of transitions into a
microstate was 1, whereas the maximum was almost 300,
and on average each microstate had 30 transitions in and out.
The statistics of the microstate transitions is shown in Fig. 5.

IV. RESULTS AND DISCUSSION

We start with analyzing the number of metastable states
using the spectrum of the original transition matrix P. As it
can be seen from Fig. 6, there are four eigenvalues close to
the Perron–Frobenius eigenvalue of 1. These eigenvalues are
separated from the rest of the spectrum by a gap. From this,
we conclude that the system exhibits four metastable states.
We call these eigenvalues significant.

The spectrum has a large number of complex eigenval-
ues. This indicates that the Markov chain is nonreversible.
The reversibility condition for a Markov transition matrix is
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FIG. 3. Microstate statistics. Each microstate is a nonempty cell of the
four-dimensional hypercube filled with points representing the molecular
dynamics trajectory. In total, there are 1306 nonempty cells �or microstates�,
and this figure shows the points �or conformations� occupancy of each such
cell.
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FIG. 4. The initial P matrix. Darker points correspond to more transitions.
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that there exists a vector u0i such that Pjiu0i= Piju0j. By sum-
ming over i, it is clear that u0 is the stationary distribution,
that is, Pu0=u0. Intuitively, this means that we observe the
transition i→ j and its reverse transition j→ i with equal
probability, which is often referred to as the detailed balance
condition. If we define a diagonal matrix Dii=1 /	u0i, the
similarity transformation D−1PD transforms a reversible
transition matrix P into a symmetric matrix with real eigen-
values. Since the similarity transformation does not change
the eigenvalues, it follows that the eigenvalues of a revers-
ible Markov chain are real. In Fig. 6, we see that this is not
true for our system. Another sign of nonreversibility is that
there exists 38 012 cases when Pij �0 while Pji=0, which
contradicts the reversibility condition. It should be stressed
that the nonreversibility is the results of finite sampling and
not a feature of the underlying system, which is in thermal
equilibrium. Numerically, however, the nonreversibility can
have a significant impact on the stability of the spectral
analysis of the transition matrix. In our case, this does not
happen however, as can be shown by comparing the result
obtained directly from the transition matrix to the results of
using a more elaborate method introduced in Ref. 15.

In Fig. 7, the first significant eigenvector of P is shown,
where the elements are sorted to reveal the level structure. To
find the sets of similar values in the eigenvectors, we applied
the K-means clustering method22 in the three-dimensional
space formed by the second, third, and fourth eigenvectors
�the first eigenvector can be omitted since it is constant�. The

clustering result is shown in Fig. 8. The numbers of points in
each cluster are 250, 480, 207, and 369 for the corresponding
metastable states.

Using the clustering result, the initial transition probabil-
ity matrix was permuted �rows and columns sorted so that
the states in the same cluster appear in sequence�, and the
hidden block dominant structure was revealed �Fig. 9�. The
transitions within the metastable states defined by the blocks
are more probable than the transitions between the meta-
stable states. Not all states belong to a metastable state. The
states outside the metastable blocks represent transitions be-
tween the states, that is, the conformations of the peptide that
are visited only when the molecule changes from one meta-
stable state to another.

In addition to the visual representation of the results
�Fig. 9�, we also present a numerical one by means of the
reduced probability matrix �4�. This matrix was constructed
from the trajectory in the following way. Each point of the
trajectory belongs to some microstate; at the same time, each
microstate belongs to some metastable state. So, following
the trajectory, the number of the transitions between the
metastable states was counted and the total probability of the
row was normalized to one,
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FIG. 5. Microstate transitions statistics. Following the trajectory, we
counted the number of transitions between the microstates. This figure
shows the number of the transitions to all other microstates in total for each
microstate.
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FIG. 6. The real and imaginary parts of the eigenvalues of the P matrix, �.
Four eigenvalues are separated from the others by a spectral gap, from
which we conclude that the peptide has four metastable states �we call these
eigenvalues significant to distinguish them from the others�.
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FIG. 7. The first significant eigenvector of P, u, whose elements, i, are
sorted to reveal the level structure.
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FIG. 8. Eigenvector clustering results. Three eigenvectors of the P matrix
corresponding to the significant eigenvalues were clustered into four clus-
ters. Each point represents one microstate, each group of points of the same
color belongs to one cluster, and each cluster corresponds to one metastable
state.
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Pred

=�
0.795 988 0 0.097 460 6 0.056 272 2 0.050 279 3

0.018 174 1 0.937 747 0 0.031 854 5 0.012 224 0

0.077 611 4 0.048 468 0 0.861 560 0 0.012 360 7

0.003 598 3 0.017 442 8 0.004 486 9 0.974 472 0
� .

�4�

High values of the diagonal elements indicate good quality
of the results since it means that the transitions are most
probable within the metastable states.

Finally, in Fig. 10, we show the density Ramachandran
plots illustrating the found metastable conformations with
the notation defined in Fig. 2. Our result shows that the
VPAL molecule has metastable states corresponding to the
following dihedral angle combinations: A1B2+B1B2, A1A2,
B1A2, and A1C2 �B1A1 was not populated by the trajectory�.
Compared to what was obtained in an earlier investigation
conducted by visual inspection, the clustering is almost iden-
tical. The only difference is that the method has concatenated
two states into one, namely, A1B2+B1B2. This essentially
shows one of the advantages in using the method, which is
that the clustering is based on the dynamics of the system
and not just on where the density of states is high. The
method is therefore much better adapted to distinguish real
metastable states from spurious ones.

The computation of the dominant eigenvectors of the
transition matrix is done using a power method.23 The com-
putational complexity is therefore directly proportional to the
number of nonzero elements in the matrix. The total number
of microstates increases dramatically with the box size used
when we partition the phase space �since we have four
angles, it scales with the number of bins l�, and consequently,
the number of nonzero elements in the transition matrix
could possibly grow as �l4�2. However, in practice, there are
two effects that prevent this scaling to occur. First, only a
relatively small part of the phase space is actually visited.
Second, the transitions are typically localized in the phase
space, resulting in a sparse transition matrix where the total

number of transitions scales essentially linearly with the
number of states. In Fig. 11, the black line shows how the
total number of nonzero transitions scales in relation to the
total number of possible transitions. We also show how
sparse the transition matrix is measured in percentage filling
�the red curve in the plot�. From this we conclude that the
computational complexity of the algorithm suggested here
remains reasonable even for relatively fine partitions of the
state space.

V. CONCLUSIONS

We have used a spectral method to identify the meta-
stable conformational states of a biomolecular system repre-
sented by a Markov chain. The system consisted of a four-
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FIG. 9. The blocked �permuted� P matrix.
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FIG. 10. Ramachandran density plots. Each pair of plots shows the area that
corresponds to one metastable conformation. We obtained the following
combinations �rows from top to bottom�: A1B2+B1B2, A1A2, B1A2, and A1C2.
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residue peptide simulated using Molecular Dynamics in a
bath of explicit water. The conformational dynamics of the
peptide represented by two pairs of the dihedral angles re-
veals four well separated metastable states. The states coin-
cide with the previously empirically defined ones,9,10 thus
confirming the intuitive chemical picture by the rigorous
mathematical analysis.

Interestingly, one of the found metastable states is
equivalent to the sum of two previous ones, A1B2+B1B2 �Fig.
2�. Our more elaborate analysis11 shows that a significant
part of the trajectories passing through the state A1B2 indeed
needs to be separated and joined with the state B1B2 in order
to compensate for slight non-Markovianity of the initial five
states.

In the example discussed in this paper, the transition
matrix showed a clear sign of metastability by having a vis-
ible gap in its spectrum. When this is the case, it is easy to
immediately conclude how many metastable states to search
for in the eigenvector clustering algorithm, as well as how
many eigenvectors to include in the analysis. More complex
peptides or proteins are not expected to have such clear spec-
tral gaps, and in addition, we expect metastable states to
organize into hierarchies or relevant time scales where meta-
stability can be identified. It should be noted, however, that
this situation does not necessarily prevent the application of
the methods presented here. In the absence of a spectral gap,
it is possible to successively extend the number of eigenvec-
tors and metastable states and monitor how well the method
manages to identify metastability, i.e., by measuring how
dominant the diagonal of the reduced transition matrix is. An
example of this type of blind identification was made in Ref.
15. An alternative method for identifying metastable states
from the level structure in the eigenvectors in the absence of
a spectral gap in the spectrum was presented.24

The identification of metastable states discussed in this
paper is based on a discretization of the state space. For a
large protein with a backbone defined by hundreds or thou-
sands of dihedral angles, a naive partitioning of the states

space leads to very large number of states in the Markov
chain. As discussed in Sec. IV, the actual number of states
visited is typically very small. Still, however, the resulting
Markov chain may be too large to allow efficient analysis. In
these cases, the discretization of the state space can be based
on secondary structure or other properties �see, e.g., Ref. 25�.
It should be noted that the spectral method is independent of
the partitioning of the state space as long as the partitioning
is fine grained enough for the metastable states to be re-
solved.

The sparsity of the transition matrix, illustrated in Fig.
11, allows for numerically efficient calculation of the domi-
nant eigenvalues and eigenvectors needed for the analysis
presented in this paper. Still standard linear algebra software
can typically not handle matrices much larger than 104

�104. It is interesting to note that the problem of identifying
metastable states in Markov chains is very similar to the
recently very active topic of finding community structure in
large networks.12,26 In this area, several specially designed
algorithms have been constructed to achieve this task in very
large networks. For example, in Ref. 26, 1684 communities
�metastable states� were identified in a network with 4
�105 nodes �states� and 2.5�106 edges �observed transi-
tions�. In more recent studies, networks with millions of
nodes have been analyzed.27 It would be interesting to inves-
tigate if some of these dedicated algorithms could be trans-
ferred over and applied to protein folding data.

Identifying proper Markov states for molecular systems
is considered one of the most important challenges in the
Markov state model framework. On the one hand, strict Mar-
kov property is the necessary prerequisite for the theory. The
states of the system should be related to physically meaning-
ful conformations of the molecules in order to be useful and
experimentally verifiable. Currently, these two criteria are
met by using chemical intuition as the main tool for building
the states. Even though the process sometimes is automated
�see, for example, the very recent work8�, a formally exact,
unsupervised approach is highly desirable. Our suggested
framework is of this sort: it is mathematically sound and
does not require chemical input. We hope it can be used as a
basis for efficient practical implementations.
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