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The conditions necessary and sufficient for the Smoothed Dissipative Particle Dynamics (SDPD)
equations of motion to have a Lagrangian that can be used for deriving these equations of motion,
the Helmholtz conditions, are obtained and analysed. They show that for a finite number of SDPD
particles the conditions are not satisfied; hence, the SDPD equations of motion can not be obtained
using the classical Euler-Lagrange equation approach. However, when the macroscopic limit is
considered, that is when the number of particles tends to infinity, the conditions are satisfied, thus
providing the conceptual possibility of obtaining the Navier-Stokes equations from the principle of
least action.

I. INTRODUCTION

Obtaining hydrodynamic equations of motion from the
fundamental Action Principle is a largely unexplored area
of research. Even though the generalisation of classi-
cal Action Principle for particles to continuous fields is
known for some time [1], attempts to take into account
energy dissipation are rare and only recently such La-
grangians for fluid dynamics equations of motion are re-
ported [2–4]. An advantage provided by such Lagrangian
approach is in natural connection between the dynamics
of discrete particles and continuous fields best suitable
for describing fluids at macroscale. When particles rep-
resent atoms (even at the classical approximation) this
connection is the physical foundation of the interaction
between the scales representing multiscale, multiphysics
description of liquids, which is an active area of research.

To the best of our knowledge Lagrangians that lead to
classical Navier-Stokes (NS) equations of hydrodynamics
are unknown. Here we take the first step in the direction
of finding such Lagrangians, namely we seek to answer
the question if such Lagrangians exist. Our approach
consists of first considering the discrete approximation
of NS equations, the Smoothed Dissipative Particles Dy-
namics (SDPD) model [5], that converges to continuum
NS equations in the limit of infinite number of parti-
cles. There are mathematical conditions, attributed to
Helmholtz, that if fulfilled guarantee the existence of the
Lagrangian. We check these conditions for SDPD equa-
tions of motion and then analyse their behaviour for for
the macroscopic limit.

Our results show that the conditions are not satisfied
for SDPD equations with finite number of particles. How-
ever, we show numerically that the discrepancy decreases
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with increasing the number of particles. Also, in the limit
of infinite number of particles the conditions are satisfied,
thus providing an approach for obtaining a Lagrangian
for the Navier-Stokes equations.

II. THEORY

Mathematically, finding a Lagrangian for a system of
equations of motion amounts to solving the inverse prob-
lem of the calculus of variations [6]. It is known that for
a system of n given differential equations

Hi(t, qi, q̇i, q̈i) = 0 (1)

the necessary and sufficient condition that the system
is derivable from a Lagrangian is that the equations of
variation ofHi form a self-adjoint system. The conditions
under which the system of variations is self-adjoint are
attributed to Helmholtz [6]:

∂Hi

∂q̈j
=

∂Hj

∂q̈i
, (2)

∂Hj

∂q̇i
+

∂Hi

∂q̇j
= 2

d

dt

(
∂Hi

∂q̈j

)
, (3)

∂Hj

∂qi
=

∂Hi

∂qj
− d

dt

(
∂Hi

∂q̇j

)
+

d2

dt2

(
∂Hi

∂q̈j

)
, (4)

∀i, j = 1, . . . , n. If these conditions are satisfied, Hi must
take the form Hi = Mi + Pij q̈j , where Mi and Pij are
functions related to each other with certain conditions
(see [6]) and the Lagrangian can be constructed from
the functions Mi and Pij . Importantly, a Lagrangian
constructed this way does not necessarily have the usual
physical meaning of the difference between the kinetic
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and potential energies. Rather, it is an abstract math-
ematical function that, when used in Euler-Lagrange
equation, produces the required equations of motion.

In SDPD framework the fluid is represented by a set
of N particles, each of which is considered as a macro-
scopic thermodynamic system of constant mass mi [5].
Particles are described by their positions ri, velocities
vi, and entropy Si. The particle’s volume νi is defined
as its inverse number density di:

1

νi
= di =

∑
j

W (|ri − rj |), (5)

where W (r, h) = W (|r|, h) is a pairwise bell-shaped in-
terpolation function of compact support h (the kernel).
Various forms of W exist, we used the Lucy function

W (r) =
105

16πh3

(
1 + 3

r

h

)(
1− r

h

)3
. (6)

The gradient of W defines the function F (r) as ∇W (r) =
−rF (r), F (r) ≥ 0, which for the Lucy kernel has the form

F (r) =
315

4πh5

(
1− r

h

)2
. (7)

Using the auxiliary quantities rij = ri − rj , vij =
vi−vj , and Fij = F (|rij |) the SDPD equations of motion
read

ṙi = vi,

mv̇i =
∑
j

[
Pi

d2i
+

Pj

d2j

]
Fijrij −

(
5η

3
− ξ

)∑
j

Fij

didj
vij −

5
(
ξ +

η

3

)∑
j

Fij

didj
eijeij · vij ,

TiṠi = ϕi − 2κ
∑
j

Fij

didj
(Ti − Tj), (8)

where

eij =
ri − rj
|ri − rj |

,

ϕi =

(
5η

6
− ξ

2

)∑
j

Fij

didj
v2
ij +

5

2

(
ξ +

η

3

)∑
j

Fij

didj
(eij · vij)

2
,

Ti and Pi are particles’ temperature and pressure (calcu-
lated using phenomenological equations of state), η and
ξ are viscosities, κ is the thermal conductivity [5].
We have used the following approximations in our

SDPD model: (i) temperature was constant and equal for
all particles, (ii) the shear viscosity η was constant and
equal for all particles, (iii) the bulk viscosity ξ was negli-
gible, (iv) pressure was calculated using the Tait equation
of state

Pi = B

[(
di

ρ0

)γ

− 1

]
,

where γ = 7, B =
c20ρ0

γ
, ρ0 is the control density, and c0

is the control speed of sound.

The equation for the entropy in (8) is often consid-
ered decoupled from the equations for the position and
the velocity to a good approximation, depending on the
equations of state for P and T . Therefore, we do not
take it into account here as our model equations of state
do not depend on S. After substituting ṙi for vi in the
second equation in (8) the system (1) for independent
variables ri, x, y, and z components of which represent
variables qi, become (note, that indexes i refer to differ-
ent variables here: the particle number for ri and the
degree of freedom for qi)

Hi = C
∑
j

[(
B

(
1

ρ0

)7

d5i +Bd−2
i +B

(
1

ρ0

)7

d5j +Bd−2
j

)
Kijrij

]
−

C
∑
j

[
Kijd

−1
i d−1

j

(
A · ṙij +Drij (rij · ṙij)

(
|r|ij

)−2
)]

−mir̈i, (9)

where A =
(
5η
3 − ξ

)
, D =

(
ξ + η

3

)
, C =

315
4πh5 are constants and Kij =

(
1− |r|ij

h

)2
, di =∑

j
105

16πh3

(
1 + 3

|r|ij
h

)(
1− |r|ij

h

)3
.

Therefore, checking the Helmholtz conditions for
SDPD equations amounts to checking equations (2)-(4)
for Hi functions defined by (9).

A. First Helmholtz condition

The first condition (2) is satisfied for all variables as
the left and the right hand sides of the equation are 0 for
i ̸= j since the equation of motion for particle i does not
depend on the second time derivative of the coordinate
of a different particle j, while the case i = j is trivially
satisfied.

As we show below, the second (3) and the third (4)
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conditions are not satisfied and we analyse the residues
as we are interested in the behaviour of these residues
when the number of particles tends to infinity.

B. Second Helmholtz condition

In our case, the second Helmholtz condition becomes:

∂Hj

∂q̇i
+

∂Hi

∂q̇j
= 0, (10)

for i, j = 1, . . . , n = 3N. There are four possibilities for
this condition after assigning the particles’ coordinates
to variables qi and corresponding functions Hi (again,
indexes i have different meaning depending if they refer
to the degree of freedom as in (3) and (10) or to the
particle number as in (8)):

1. Particle i with respect to itself in the same coordi-
nate x (y, z):

∂Hxi

∂ẋi
+

∂Hxi

∂ẋi
=
∑
j

Tijd
−1
i d−1

j Qx
ij . (11)

2. Particle i with respect to itself in different coordi-
nates x and y (and other pairs of coordinates):

∂Hxi

∂ẏi
+

∂Hyi

∂ẋi
=
∑
j

Tijd
−1
i d−1

j Qxy
ij . (12)

3. Particle i with respect to a different particle j in
the same coordinate x (y, z):

∂Hxi

∂ẋj
+

∂Hxj

∂ẋi
= Tijd

−1
i d−1

j Qx
ij . (13)

4. Particle i with respect to a different particle j in
different coordinates x and y:

∂Hxi

∂ẏj
+

∂Hyj

∂ẋi
=

∂Hxj

∂ẏi
+

∂Hyi

∂ẋj
= Tijd

−1
i d−1

j Qxy
ij . (14)

The following variables were used:

Tij = CKijmimj , (15)

Qx
ij = A+Dxij

(
|r|ij

)−2

, (16)

Qxy
ij = Dxijyij

(
|r|ij

)−2

. (17)

C. Third Helmholtz condition

Our functions Hi lead to the following third Helmholtz
condition:

∂Hj

∂qi
− ∂Hi

∂qj
+

∂

∂t

(
∂Hi

∂q̇j

)
= 0, (18)

for i, j = 1, . . . , n = 3N with four realisations:

1. Particle i with respect to itself in the same coordi-
nate x (y, z):

∂Hxi

∂xi
− ∂Hxi

∂xi
+

∂

∂t

(
∂Hxi

∂ẋi

)
= Rx

ij , (19)

variable Rx
ij is defined in appendix A.

2. Particle i with respect to itself in different coordinates x and y (and other pairs of coordinates):

∂Hxi

∂yi
− ∂Hyi

∂xi
+

∂

∂t

(
∂Hyi

∂ẋi

)
=

=
∑
j

[
Tij

((
Liyij + d−2

i d−1
j Sy

ij

)(∑
k

CKikxik

)
−

−
(
Lixij + d−2

i d−1
j Sx

ij

)(∑
k

CKikyik

))
+

+ Tijd
−1
i d−1

j [vijxijyij − vijyijxij ] 2

h |r|ij
(
1− |r|ij

h

)A− d−1
j KijA+D

(
|r|ij

)−2

+Rxy
ij . (20)

The expression for
∂Hyi

∂xi
− ∂Hxi

∂yi
+ ∂

∂t

(
∂Hxi

∂ẏi

)
is almost the same with two signs reverted, see appendix A, equation

(A1).
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3. Particle i with respect to a different particle p in the same coordinate x (y, z):

∂Hxi

∂xp
− ∂Hxp

∂xi
+

∂

∂t

(
∂Hxp

∂ẋi

)
=

= C
∑
j

[
Tij

(
Kipxip

[
Lixij + d−2

i d−1
j Sx

ij

]
−Kpjxpj

[
Ljxij + d−1

i d−2
j Sx

ij

])
+

+TipKijxij

(
Lixip + d−2

i d−1
p Sx

ip

)]
+

+ C
∑
l

(
Tpl

[
Kipxip

(
Lpxpl + d−2

p d−1
l Sx

pl

)
+Kilxil

(
Llxpl + d−1

p d−2
l Sx

pl

)]
+

+ TipKplxpl

(
Lpxip + d−1

i d−2
p Sx

ip

))
+Rx

ip. (21)

The expression for
∂Hxp

∂xi
− ∂Hxi

∂xp
+ ∂

∂t

(
∂Hxi

∂ẋp

)
is almost the same with two signs at the summations reversed, see

appendix A, equation (A2).

4. Particle i with respect to a different particle p in different coordinates x and y:

∂Hxi

∂yp
− ∂Hyp

∂xi
+

∂

∂t

(
∂Hyp

∂ẋi

)
=

= Tipd
−1
i d−1

p [vipyipxip − vipxipyip]

 2

h |r|ip
(
1− |r|ip

h

)A+D
(
|r|ip

)−2

+

+ C
∑
j

[
Tij

(
Kipyip

[
Lixij + d−2

i d−1
j Sx

ij

]
−Kpjypj

[
Ljxij + d−1

i d−2
j Sx

ij

])
−

−TipKijxij

(
Liyip + d−2

i d−1
p Sy

ip

)]
+

+ C
∑
l

[
Tpl

(
Kipxip

[
Lpypl + d−2

p d−1
l Sy

pl

]
+Kilxil

[
Llypl + d−1

p d−2
l Sy

pl

])
−

−TipKplypl
(
Lpxip + d−1

i d−2
p Sx

ip

)]
+Rxy

ip . (22)

The analogous expressions for the other combinations of the coordinates as well as definitions of the auxiliary
variables are given in appendix A, equations (A3-A11).

As the right hand sides of equations (11-14), (19-22)
are clearly not 0, the second and the third Helmholtz
conditions are not satisfied for a system of finite number
of SDPD particles.

III. THE MACROSCOPIC LIMIT LEADING TO
CONTINUOUS NAVIER-STOKES SYSTEM

Even though the second and the third coniditions are
not satisfied, it is interesting to investigate how large the
discrepancy is. In other words, what is the value of the
right hand sides of the conditions, which should be zero
if they were satisfied. This is an important question as
the SDPD equations are a discrete approximation of the
continuous NS equations. It is known, that the SDPD
equations converge to NS equation in the limit of infinite
number of particles (see below for details).

The original SDPD equations have two parts: deter-
ministic and stochastic [7]. The deterministic part, eq.
(3) in [7], defines the macroscopic dynamics and does not

depend on the spatial and temporal scales (“scale-free”),
that is, it is independent of the volume of particles νi. On
the contrary, the stochastic part, eq. (4) in [7], defines
the scale and it is inversely proportional to the particles’
volume. In the large particles limit, the stochastic part
is negligible. Therefore, in the macroscopic limit, only
the deterministic part of SDPD equations needs to be
considered, which are our equations (8).

A. How particles converge to hydrodynamic fields

From the other hand, the SDPD equations are the dis-
crete approximation for continuous Navier-Stokes equa-
tions describing the evolution of hydrodynamic fields ρ,
v, and S. As explained in [8], in order to obtain the con-
tinuous limit of the discrete approximation, the number
of particles N should tend to infinity and, at the same
time, the width of the kernel’s support h should tend to
0. In this limit the set of N SDPD equations tends to
three Navier-Stokes equations describing the continuous
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0 h
0
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r
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1
(r
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Figure 1. The form of the function W1

hydrodynamic fields.
We, therefore, need to analyse (or define) how the

quantities on the right hand side of equations (10)-(22)
depend on N and take the limit N → ∞, making sure
that in this limit also h → 0.

B. The Lucy kernel function and particle’s number
density

The most involved quantity to estimate is the volume
of the particles as it is defined through the summation
involving the kernel function (5). To analyse its depen-
dence on N let us first consider the Lucy function written
in the form

W (r;h) =
105

16π
W1(r;h), (23)

where

W1(r;h) =
1

h3

(
1 + 3

r

h

)(
1− r

h

)3
(24)

and W1(r) = 0 for r < 0 or r > h, Fig. 1.
From (5), the number density di of the particle is equal

to

1

νi
= di =

105

16π

K∑
j=1

W1(|rij |), (25)

where K is the number of particles inside the sphere of
radius h. K is approximately equal to the fraction of the
volume of this sphere in the total volume of the system
V0:

K =
νi
V0

N =
4π

3V0
h3N. (26)

In order to estimate the value of the sum in (25) we need
to estimate how the distances |rij | are distributed.
In the assumption that the particles are distributed

uniformly in 3D space, the distances r from the centre
of a sphere of radius R are distributed according to the

cumulative distribution function (CDF) F (r) =
(
r
R

)3
.

Figure 2. The linear dependence of function Q on K

The distribution of distances r are, then, obtained us-
ing inverse transform sampling, where a uniformly dis-
tributed values U are transformed by the inverse CDF:
r = F−1(U), which in our case is equal to r = RF

1
3 . Tak-

ing an equidistant set of points j
K as a set of uniformly

distributed points, the value of the distances becomes

|rij | =
(

j

K

) 1
3

h.

Substituting this value into the sum of (25) we obtain
the following expression

1

h3

K∑
j=1

[
1− 3

(
j

K

) 1
3

][
1−

(
j

K

) 1
3

]3
=

1

h3
Q(K).

Function Q is very close to a linear function for allK > 8,
Fig. 2, and can be approximated as Q(K) ≈ 0.11K.
Substituting this and the value for K from (26), we ob-

tain the estimation for the number density di as a func-
tion of N :

di =
105

16π

1

h3
Q(K) ≈ 105 · 0.11

12V0
N = EN (27)

with E constant.

C. The macroscopic limit

In order to estimate the macroscopic limit, what re-
mains is to estimate the distance xij , which is simply the
x-component of the average distance between the parti-

cles and, as such, can be assumed to be equal to
(
V0

N

) 1
3

multiplied by j with plus or minus sign depending on the
direction of the vector rij = ri − rj :

xij = ±
(
V0

N

) 1
3

j.
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The mass of particles is equal to mi =
M0

N , where M0 is
the total mass of the system.

Finally, we need to define how the kernel support h
tends to zero with N → ∞. A reasonable assumption
here is to require the radius of the sphere h to be such,
that there is always a fixed number of particles K0 inside
the sphere. Hence, from (26), the value of h becomes

h =

(
K0

N

3V0

4π

) 1
3

= GN− 1
3 , (28)

with G constant.
Putting all together, the right hand side of equation

(11) becomes

∂Hxi

∂ẋi
+

∂Hxi

∂ẋi
= (29)

315

4π

K0∑
j

1

h5

(
1− |r|ij

h

)2

mimj
1

di

1

dj

(
A+Dxij

1

|r|2ij

)
=

315

4π

K0∑
j

(
GN− 1

3

)−5
(
1−

(
j

K0

) 1
3

)2

M2
0 (NE)−2(N)−2

(
A±DV

1
3
0 N− 1

3 j

(
j

K0

)− 2
3 (

GN− 1
3

)−2
)
.

In this expression, all terms except N do not grow larger
than K0. Ignoring constants, the dependence on N of
the terms under the sum is

∂Hxi

∂ẋi
+

∂Hxi

∂ẋi
∼

K0∑
j

(
N− 7

3 ±N−2
)
, (30)

which tends to 0 in the limit N → ∞.
Similar analysis of the other three possibilities for the

second Helmholtz condition, section II B, leads to anal-
ogous expressions that depend on negative powers of N ,
thus tending to 0 in the macroscopic limit.

For the third condition, section IIC, we also needed
to make an additional assumption on how the velocity
difference vij tends to 0 with the increase of the number
of particles N , and, hence, the decrease of the distance
between the particles. Assuming the same behaviour as
for rij , that is vij ∼ N− 1

3 , similar results for the right
hand sides of equations (20)-(22) are obtained, that is
the dependence on negative powers of N leading to their
vanishing in the N → ∞ limit.

IV. SIMULATION DETAILS

To confirm the analysis above, we have also performed
numerical estimation of the right hand sides of the condi-
tions by simulating an SDPD system with varying num-
ber of particles (keeping all other parameters the same).
Our results show that with growing N the right hand
sides (the deviation from 0) become smaller, thus con-
firming the behaviour in the N → ∞ limit.

Table I. Parameters of the simulated system

ν shear viscosity 1 pg/(µm · µs)
c0 control sound velocity 10 µm/µs

d0 control density 1 pg/µm3

h cut-off radius 0.18 µm

T temperature 300 K

mi particle mass 0.001 pg

dt time step 5 · 10−4 µs

We used an implementation for SDPD developed as
a package for the popular Molecular Dynamics simula-
tor LAMMPS [9]. The package USER-SDPD is described
in [10]. It simulates water-like liquid with approxima-
tions described by (8) at mesoscopic scales where thermal
fluctuations are small. The parameters of the simulated
system are listed in table I. Cubic simulation box with
periodic boundary conditions was used.
An important parameter of simulation was the cut-off

radius h that controlled how many neighbour particles
were taken into account when calculating the particle
summations in SDPD formulas. Clearly, the further a
particle from the considered particle i the smaller its con-
tribution to the sum. Therefore, we investigated how the
values of calculated quantities changed with increasing h.
We have found that in all cases the value of h = 0.18µm
was sufficiently large for the calculated values to con-
verge.

V. NUMERICAL RESULTS AND DISCUSSION

As the second and the third Helmholtz conditions are
not satisfied for SDPD equations of motion we investi-
gated how the residues (the right hand sides of equations
(11-14), (19-22)) change with increasing the number of
SDPD particles keeping the density of the fluid constant.
The limit of infinite number of particles provides the clas-
sical continuous Navier-Stokes equations [5].
The second condition in the form of equations (11, 12)

demonstrates clear convergence of the residue with in-
creasing the number of particles in the system, Fig. 3,4.
The second condition residues in the form of equations

(13) and (14) are functions of the distance between parti-
cles i and j. We have summarised their values in Fig. 5,6.
The tendency to lower values with increasing the number
of particles in the system is evident for both equations.
We found that for the third condition in the form of

equations (19,20,A1) the residues values wildly fluctuate
between the particles in the system and at different time
moments. We are investigating the reasons for this be-
haviour.
The residues for the third condition in the form of

equations (21,22,A3-A5) converge towards 0. All com-
binations of coordinates produce similar graphs, an ex-
ample is shown in Fig. 7
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Figure 3. Second Helmholtz condition residue as a function
of the number of particles in the system, equation (11); the
graphs for x, y, and z coordinates overlap completely

Figure 4. Second Helmholtz condition residue as a function
of the number of particles, equation (12); the graphs for x, y
(blue), x, z (orange), and y, z (green) combinations of the
coordinates are shown

VI. CONCLUSIONS

In this paper we investigated if it is possible to de-
rive Navier-Stokes hydrodynamic equations from a La-
grangian using the Euler-Lagrange equation. For this we
analysed the three Helmholtz conditions necessary for
a dynamical system to be derivable from a Lagrangian
function. As the dynamical system we used SDPD equa-
tions of motion that are discrete approximations of the
Navier-Stokes equations that converge to them in the in-
finite number of particles and zero kernel function sup-
port limit. We have found that the second and the third
conditions are not satisfied for a finite number of parti-
cles, however the residues tend to zero with increasing

Figure 5. Second Helmholtz condition residue as a function of
the distance between two particles, equation (13); the values
for different number of particles in the system are shown

Figure 6. Second Helmholtz condition residue as a function of
the distance between two particles, equation (14); the values
for different number of particles in the system are shown

number of particles. Also these residues tend to 0 in the
analytical limit N → ∞ and h → 0. Thus, the con-
tinuous Navier-Stokes equations can be derived from a
Lagrangian, at least in principle.

We are currently working on obtaining the explicit
form of the Lagrangian in the macroscopic limit when
the Helmholtz conditions are satisfied.

Finally, the presented results will be used as the basis
for constructing hybrid particles, possessing simultane-
ously the properties of atoms and mesoscopic hydrody-
namic particles, thus opening up the possibility of smooth
transformation between physically distinct scales.
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Appendix A: Expressions for the third Helmholtz condition

The expression for the third Helmholtz condition for particle i with respect to itself in different coordinates x and
y, analogous to (20), reads:

∂Hyi

∂xi
− ∂Hxi

∂yi
+

∂

∂t

(
∂Hxi

∂ẏi

)
=

=
∑
j

[
−Tij

((
Liyij + d−2

i d−1
j Sy

ij

)(∑
k

CKikxik

)
−

(
Lixij + d−2

i d−1
j Sx

ij

)(∑
k

CKikyik

))
−

−Tijd
−1
i d−1

j [vxijyij − vyijxij ] 2

h |r|ij
(
1− |r|ij

h

)A− d−1
j KijA+D

(
|r|ij

)−2

+Rxy
ij . (A1)

The expression for the third Helmholtz condition for particle i with respect to a different particle p in the same
coordinate x (y, z), analogous to (21), reads:

∂Hxp

∂xi
− ∂Hxi

∂xp
+

∂

∂t

(
∂Hxi

∂ẋp

)
=

= −C
∑
j

[
Tij

(
Kipxip

[
Lixij + d−2

i d−1
j Sx

ij

]
−Kpjxpj

[
Ljxij + d−1

i d−2
j Sx

ij

])
+

+TipKijxij

(
Lixip + d−2

i d−1
p Sx

ip

)]
−

− C
∑
l

(
Tpl

[
Kipxip

(
Lpxpl + d−2

p d−1
l Sx

pl

)
+Kilxil

(
Llxpl + d−1

p d−2
l Sx

pl

)]
+

+ TipKplxpl

(
Lpxip + d−1

i d−2
p Sx

ip

))
+Rx

ip. (A2)

The expressions for the third Helmholtz condition for particle i with respect to a different particle p in different
coordinates x and y, analogous to (22) read:

∂Hyp

∂xi
− ∂Hxi

∂yp
+

∂

∂t

(
∂Hxi

∂ẏp

)
=

= −Tipd
−1
i d−1

p [vyipxip − vxipyip]

 2

h |r|ip
(
1− |r|ip

h

)A+D
(
|r|ip

)−2

−

− C
∑
j

[
Tij

(
Kipyip

[
Lixij + d−2

i d−1
j Sx

ij

]
−Kpjypj

[
Ljxij + d−1

i d−2
j Sx

ij

])
−

−TipKijxij

(
Liyip + d−2

i d−1
p Sy

ip

)]
−

− C
∑
l

[
Tpl

(
Kipxip

[
Lpypl + d−2

p d−1
l Sy

pl

]
+Kilxil

[
Llypl + d−1

p d−2
l Sy

pl

])
−

−TipKplypl
(
Lpxip + d−1

i d−2
p Sx

ip

)]
+Rxy

ip , (A3)
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∂Hxp

∂yi
− ∂Hyi

∂xp
+

∂

∂t

(
∂Hyi

∂ẋp

)
=

= Tipd
−1
i d−1

p [vyipxip − vxipyip]

 2

h |r|ip
(
1− |r|ip

h

)A+D
(
|r|ip

)−2

+

+ C
∑
j

[
Tij

(
Kpjxpj

[
Ljyij + d−1

i d−2
j Sy

ij

]
−Kipxip

[
Liyij + d−2

i d−1
j Sy

ij

])
+TipKijyij

(
Lixip + d−2

i d−1
p Sx

ip

)]
−

− C
∑
l

[
Tpl

(
Kipyip

[
Lpxpl + d−2

p d−1
l Sx

pl

])
−Kilyil

[
Llxpl + d−1

p d−2
l Sx

pl

]
−

−TipKplxpl

(
Lpyip + d−1

i d−2
p Sy

ip

)]
+Rxy

ip , (A4)

∂Hyi

∂xp
−

∂Hxp

∂yi
+

∂

∂t

(
∂Hxp

∂ẏi

)
=

= −Tipd
−1
i d−1

p [vyipxip − vxipyip]

 2

h |r|ip
(
1− |r|ip

h

)A+D
(
|r|ip

)−2

−

− C
∑
j

[
Tij

(
Kpjxpj

[
Ljyij + d−1

i d−2
j Sy

ij

]
−Kipxip

[
Liyij + d−2

i d−1
j Sy

ij

])
+TipKijyij

(
Lixip + d−2

i d−1
p Sx

ip

)]
+

+ C
∑
l

[
Tpl

(
Kipyip

[
Lpxpl + d−2

p d−1
l Sx

pl

])
−Kilyil

[
Llxpl + d−1

p d−2
l Sx

pl

]
−

−TipKplxpl

(
Lpyip + d−1

i d−2
p Sy

ip

)]
+Rxy

ip , (A5)

where A =
(
5η
3 − ξ

)
, D =

(
ξ + η

3

)
, C = 315

4πh5 are constants and the following auxiliary variables were introduced:

Li = 5B

(
1

ρ0

)7

d4i + 2Bd−3
i , (A6)

Sx
ij = Avxij +Dxij (rij · vij)

(
|r|ij

)−2

, (A7)

Rx
ij =

∑
j

Tij

Qx
ij

− 2

h |r|ij didj
(
1− |r|ij

h

) (rij · vij)+

+d−1
i d−2

j

(∑
k

CKjk (rjk · vjk)

)
+ d−2

i d−1
j

(∑
k

CKik (rik · vik)

))
+

+2d−1
i d−1

j D
(
|r|ij

)−2
[
vxijxij − (rij · vij)x2

ij

(
|r|ij

)−2
]]

, (A8)

Rxy
ij =

∑
j

Tij

Qxy
ij

− 2

h |r|ij didj
(
1− |r|ij

h

) (rij · vij)+

+d−2
i d−1

j

(∑
k

CKik (rik · vik)

)
+ d−1

i d−2
j

(∑
k

CKjk (rjk · vjk)

))
+

+d−1
i d−1

j D
(
|r|ij

)−2
[
vxijyij + vyijxij − 2

(
|r|ij

)−2

(rij · vij)xijyij

]]
, (A9)
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Rx
ip = Tip

Qx
ip

 2

h |r|ip didp
(
1− |r|ip

h

) (rip · vip)−

−d−1
i d−2

p

∑
j

CKpj (rpj · vpj)

− d−2
i d−1

p

∑
j

CKij (rij · vij)

+

+d−1
i d−1

p 2Dxip

(
|r|ip

)−2
[
xip

(
|r|ip

)−2

(rip · vip)− vxip

]]
, (A10)

Rxy
ip = Tip

Qxy
ip

− 2

h |r|ip didp
(
1− |r|ip

h

) (rip · vip)+

+d−1
i d−2

p

∑
j

CKpj (rpj · vpj)

+ d−2
i d−1

p

∑
j

CKij (rij · vij)

+

+d−1
i d−1

p D
(
|r|ip

)−2
[
vxipyip + xipvyip − 2 (rip · vip)xipyip

(
|r|ip

)−2
]]

. (A11)


