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A novel statistical analysis of Molecular Dynamics generated trajectories is applied to various bulk
liquids and a peptide in water. The analysis provides unique information on the full dimensional
trajectory. In particular, it demonstrates that the phase space exploration is a very slow process that
has the time scale of hundreds of nanoseconds even in bulk water and argon. Most importantly, the
areas of the phase space visited at these times are different, in contrast to the commonly assumed
uniform random search process. For a 21-residue peptide in explicit water it has been found that
the peptide exhibits nanoseconds long periods that significantly differ in the rates of the phase space
exploration. During these periods the rates remain the same but different from other periods and
from the phase space covering rate in water.

I. INTRODUCTION

Many methods are developed for correct calculation of
the free energy of molecular systems from Molecular Dy-
namics (MD) simulation (for a few recent examples see
[1–5]). The most difficult problem here is a correct sam-
pling of the phase space of the molecular system. Since
the molecular dynamical system is extremely high dimen-
sional, its phase space can not be sampled exhaustively
in any feasible MD simulation. Thus, various non-trivial
methods have to be used that provide a statistically cor-
rect coverage of the phase space areas involved in the
chemical process under investigation.

Sampling of conformational space (that is coordinates
only, no information on the momenta is used) is the sub-
ject of extensive investigation in the field of bio-molecular
modelling. A good review can be found at [6]. An in-
depth study [7] presents non-trivial results that demon-
strate that (i) the sampling depends crucially on the
quality of the forcefield of the simulation and (ii) the
simulated physical chemistry characteristics of studied
systems significantly depend on the quality of sampling.
This includes to a large extend the reaction rates that,
in turn, are defined by the ”rare events” in the dynamics
of the system [8].

Recently the question of the phase space sampling
has attracted researchers’ attention, at least it has been
recognised that the issue is important both technically (in
bio-molecular simulations) and conceptually. Perhaps,
the most widely investigated area, besides the free en-
ergy calculation, is various methods of artificial increas-
ing the phase space area explored by the system in the
simulation.

These include many modifications of molecular dynam-
ics aimed at accelerating the folding of proteins. In the
area of bio-molecular simulations one of the most widely

∗Electronic address: dn232@cam.ac.uk

used method is Replica-Exchange Molecular Dynamics
[9–12]. In this method several Molecular Dynamics sim-
ulations of the same system are run at different tem-
peratures in parallel and the simulations periodically ex-
change temperatures. The range of temperatures allow
the system to explore more of the phase space than is
normally done in standard Molecular Dynamics. An-
other class of method for encouraging the conformational
changes of the bio-molecule is Accelerated Molecular Dy-
namics or Hyperdynamics methods [13–15]. Here the
change of the phase space exploration is achieved through
the modification of the potential energy of the system.
An extra term is added at the values of the energy be-
low a given threshold. This reduces the energy barriers
between the states and results in faster phase space ex-
ploration. A method designed specifically for peptides
and proteins systems uses the construction of a Markov
model of conformational transitions [16, 17]. The ap-
proach divides the simulation into independent parts that
can be run on independent computers. However, unlike
Replica-Exchange method the simulations are run at the
same temperature. This technique has been pioneered
in particular in the Folding@Home project and reached
unprecedented scale of computation involving hundreds
of thousands of computers.

A serious problem with these techniques is that they
change the system (the forcefield or the dynamics) un-
controllably, thus risking to alter the native state of the
protein. Indeed, as we have recently shown [18, 19], such
changes can lead to not only a wrong folding state but
also to a meaningless folding time. This is precisely be-
cause the system is artificially forced to explore the phase
space areas that are different from the areas visited by
the original, non-modified system. Therefore, the de-
velopment of acceleration schemes for the folding MD
simulations that explore the phase space correctly is of
particular importance.

Despite all these works, there are very few investiga-
tions that focus on the sampling of the phase space di-
rectly. These are mostly the ones that study the reaction
rates and associated events of the potential barrier cross-
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ing (and recrossing). The authors of [20] concentrate on
long pathways and find that the sampling provided by
the ”natural” trajectory (that is without an artificial ac-
celeration) is not enough for obtaining robust statistics
on the reacting trajectories. However, only the natural
sampling provides correct data for calculating the reac-
tion rates. As an example of recent new methodologies
of robust techniques of correct phase space sampling can
be the publication [21].

A crucially important assumption is utilised in all these
methods: the MD trajectory is believed to sample the
phase space randomly, at least at the time scale of several
picoseconds. In other words, if we consider the points
along the trajectory with the time step of the order of
several picoseconds and longer, they are assumed to be
completely equivalent to a purely random process and
the probability of different points are exclusively defined
by the energy differences at the points. This view seems
to be supported by the standard autocorrelation analysis
that shows that at these times there is no correlations
in molecular signals, thus the signal is equivalent to a
random process.

We would like to emphasize here the difference between
”random” and ”chaotic”. The former is indistinguishable
from the latter in terms of two point time correlations.
Moreover, the molecular systems are commonly assumed
to be highly chaotic and for this reason, at the time scales
of several picoseconds, statistically equivalent. We pro-
vide more details on this in our previous publications
[22, 23].

Another important consideration here is a specific na-
ture of the free energy calculations. In sharp contrast
to other dynamical characteristics, such as, for exam-
ple, dynamical correlation functions or structure factors,
it is important to consider multi-point time correlations
here. The majority of the common characteristics are de-
fined using only two-point time correlations. These could
indeed show good statistics on a relatively short time
scales. However, the inclusion of the critically impor-
tant for the free energy calculations multi-point statistics
makes the situation fundamentally different. Naturally,
the latter is not an abstract academic exercise, but a
practically crucial calculation since the free energy de-
fines experimentally measurable reaction rates.

This approach leads to the ”folding funnel” concept
when applied to the process of protein folding. The con-
cept introduces ”non-randomness” at the level of tran-
sitions between the local minima on the funnel. The
dynamics within the minima is still regarded purely ran-
dom. Therefore, all useful information is contained in the
free energy surface and indeed, the major efforts in this
area are devoted to the analysis of the energy surfaces.

There are two immediate problems with this approach.
First, it is not possible to investigate the whole free en-
ergy surface, it is infeasibly large. Second, the real molec-
ular trajectory does not have enough time to sample the
whole surface, nevertheless it finds the correct sequence of
the minima that leads to the native conformation. Thus,

elucidating the origin of this non-random phase space
covering directly from the dynamic trajectory (not from
the analysis of the potential energy of the system) is an
important problem.

More specifically, the questions that we try to answer
in this work are (i) how much of the phase space is ac-
tually covered by the molecular trajectory if it is allowed
to evolve under the ”true” dynamics (without any artifi-
cially introduced randomness) according to the equations
of motion; (ii) at what times can we consider that enough
phase space has been sampled by the trajectory? To an-
swer these questions we use a sophisticated statistical
analysis of the MD trajectories.

We show that our analysis provides information about
the evolution of the full dimensional phase space trajec-
tory of the system. It is possible to obtain very detailed
information about the whole dimensional trajectory by
analysing low dimensional (macroscopic) observables of
the system such as, for example, individual atom’s ve-
locity, coordinate, or system’s instant temperature. We
demonstrate that the trajectory explores the phase space
very slowly, at the time scale of hundreds of nanoseconds
even for such homogeneous molecular systems as bulk
water and argon. When applied to a peptide system our
approach reveals long periods (dozens of nanoseconds)
when the molecule is at ”dynamical frustration”, that is
it does not explore other areas of the phase space.

Thus, we show that the commonly accepted random
character of the phase space exploration generally does
not hold. It is to a large extent defined by the complex
dynamics of the molecular system, not just the Boltz-
mann distribution of the phase spaced density. There-
fore, great care must be taken when applying methods
that modify the way the phase space is explored by the
molecular system.

II. THE METHOD

Molecular trajectory obtained in the simulation exper-
iment is a series of 2N dimensional phase space points qi,
where N is the number of degrees of freedom of the sys-
tem, i.e. the number of atoms minus various constrains
such as fixed bond lengths, angles, etc. N is of the order
of several thousands for realistic MD simulations. Thus,
the molecular trajectory is a very high dimensional ob-
ject. The points are generated by the system along the
trajectory at fixed time moments (Fig. 1).

To analyse the data almost always low dimensional ob-
servables (macro-observables) are considered, for exam-
ple a velocity of an atom v. This is a projection of the
full dimensional trajectory onto a low dimensional ob-
servable, in this case v. An important question is: by
analysing the macro-observable what can we say about
the whole dimensional phase space trajectory? More
specifically, can we obtained any information on how
much of the whole dimensional phase space is covered
by a piece of trajectory?
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FIG. 1: Illustration of the degeneracy of the macro-
observable projection of the full-dimensional phase space
trajectory. The same sequence of the observable (the
velocity) {vtvt+1vt+2vt+3} is generated by two different
pieces of the phase space trajectory {qtqt+1qt+2qt+3} and
{q′tq′t+1q

′
t+2q

′
t+3}

A key point to realise in the context of this work is that
this low dimensional projection of the phase space trajec-
tory is degenerate, that is very many different realisations
of the trajectory produce the same series of values of the
low dimensional projection v (Fig. 1). This is caused by
(i) the discrete time sampling of the trajectory, (ii) the
finite tolerance of the measurements of v, and (iii) the
independence of v at each individual time moments from
some other degrees of freedom, for example the positions
and velocities of distant at those moments atoms. There-
fore, the whole phase space Γ is partitioned into the areas
such that on each of them the macroscopic observable v
takes a unique value while the full dimensional points qi

can have different values (Fig. 1).
The values of the observable variables that we analyse

are discrete and finite. In other words, we deal with a
set of countable number of symbols. In the case of the
computer floating point representation, for example, the
number of symbols is large but limited and defined by the
precision used in the simulation (single, double, etc). The
finite precision of v results in a finite (but large) set of its
possible values. However, it is easy to check that even a
very coarse representation of v produces almost the same
characteristics of the analysed molecular signals. Fig. 2
shows one of such characteristics, the common velocity
autocorrelation function for a signal where the velocity
coordinates are replaced by only three values in vx,vy,
and vz, such that {x ≡ −1, if x < −1;x ≡ 0, if − 1 ≤
x < 1;x ≡ 1, if x ≥ 1}, where x represent vx,vy, and
vz. The total number of possible values of the resulting
coarse grained vector is 33 = 27, that is the signal can be
represented by only 27 symbols. Nevertheless, the auto-
correlation function of this signal is very similar to the
original one, calculated from the double precision values
of v.

This representation of the dynamics in terms of sym-
bols from a finite size alphabet is called ”symbolic dy-
namics” and is the subject of the mathematical field with
the same name [24]. We here show that this is a very

FIG. 2: Autocorrelation functions C(τ) ≡ 1
T

∑T

t
vt ·vt+τ for

the original velocity of the hydrogen of bulk water (black) and
the signal made of 27 symbols (red, see text or details)

useful framework that allows to make unexpected conclu-
sions about the phase space trajectory of the molecular
system.

A. The dynamics makes the partition finer

The evolution of the phase space points q, sampled
at times t, is governed by an operator T: qt+1 = Tqt.
Because of the determinism the dynamics {qt} forms a
Markov chain. Considering an ensemble of such dynam-
ical systems, denote a random variable representing the
current microstate as Q, that is a set of all possible values
of the phase space points having probabilities generated
by the dynamics T.

A macroscopic observed variable A is a function f of
the microstate Q (for example, the instantaneous tem-
perature 1

Nk

∑
i miv2

i , where N is the number of degrees
of freedom, k is the Boltzmann constant, mi are the
atoms’ masses, and vi are their velocities). As discussed
before, the function f partitions the phase-space Γ into
mutually exclusive and jointly exhaustive sets, on each of
which f takes a unique value. Denote the partition of Γ
induced by f as F . The observed process is At = f(Q)
and it is not necessarily Markovian (Fig. 3).

Now, what happens to this partition when the se-
quences of At are considered instead of the inidividual
values of A? Take an observation at time t, At. The cor-
responding set of point in Γ is Ft. For a sequence of two
observations at the current and previous time moments
the set of points is

Ft ∩TFt−1, (1)

which is a refinement of the partition F . This proce-
dure can be repeated any countable number of times thus
providing the refined partitions for the histories of the
macro-observable A. Thus, the dynamics makes the ini-
tial partition induced by the macro-observable finer, the
longer the sequence {At} (the ”history”) the finer the
partition generated by the sequence is.
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B. Computational Mechanics [25] coarsens the
partition

The next step is to apply a special statistic, called
Computational Mechanics (CM) [25], to the observable
A. The rigorous definition of CM is given in Appendix
A. Here we provide the part of the approach necessary
for answering the main question formulated in the Intro-
duction.

All past A−i and future A+
i halves of bi-infinite se-

quences of the macro observable centred at times i are
considered. Two pasts A−1 and A−2 are defined equiv-
alent if the conditional distributions over their futures
P (A+|A−1 ) and P (A+|A−2 ) are equal. A causal state
ε(A−i ) is a set of all pasts equivalent to A−i : εi ≡ ε(A−i ) =
{λ : P (A+|λ) = P (A+|A−i )}. At a given moment the
system is at one of the causal states, and moves to
the next one with the probability given by the transi-
tion matrix Tij ≡ P (εj |εi). The transition matrix de-
termines the asymptotic causal state probabilities as its
left eigenvector P (εi)T = P (εi), where

∑
i P (εi) = 1.

The collection of the causal states together with the
transition probabilities define an ε-machine. The Sta-
tistical Complexity is the informational measure of the
size of the ε-machine: Cµ = H[P (εi)], where P are
the probabilities of the causal states and H is the Shan-
non entropy of the distribution of a random variable ν,
H[P (ν)] ≡ −∑

ν P (ν) log2 P (ν).
Thus, the essence of CM is in grouping the histories

{At} into causal states. In terms of the partitions of
the phase space this corresponds to joining together the
cells of Γ induced by the dynamics. Importantly, the new
cells represent a Markovian process constructed from the
observed process At by building the ε-machine on A. Now
by the ε-machine definition the sequence of the causal
states {εt} makes a Markov chain (Fig. 3).

C. The partition generated by Computational
Mechanics is the most informative one

Shalizi and Moore [26] show that in this setting the
Statistical Complexity has a clear physical meaning: it
quantifies the amount of information contained in the
new constructed macro-observable process {εi} about the
microstate:

Cµ = I[Q; ε], (2)

where I is the mutual information between random vari-
ables X and Y : I[X; Y ] = H[X]−H[X|Y ]; and H[X|Y ]
is a conditional entropy of X given Y : H[X|Y ] =
−∑

P (X)
∑

P (X|Y ) log2 P (X|Y ).
This is because the knowledge of the microstate would

specify the macro observable precisely: H[ε|Q] = 0, be-
cause all histories contained in εt and the corresponding
partition of Q would uniquely define the next state εt+1

(the ε-machine definition). Using this and the equality

FIG. 3: Schematic illustration of the sequences used to define
formula (2). Phase space points {q} and {q′} of two pieces
of the trajectory form Markov sequences. The corresponding
observation sequences A and A′ are not Markovian since the
same value At leads to different At+1 and A′t+1 depending
on the previous values At−1 and A′t−1. However, if both his-
tories {. . . At−2At−1At} and {. . . A′t−2A

′
t−1At} belong to the

same causal state εt than the next causal state εt+1 is defined
without knowing εt−1, thus making {ε} a Markov sequence.

H[X] + H[Y |X] = H[Y ] + H[X|Y ] the equation (2) fol-
lows:

H[Q|ε] + H[ε] = H[ε|Q] + H[Q]
H[Q|ε] + Cµ = H[Q]

Cµ = H[Q]−H[Q|ε]
Cµ = I[Q; ε].

Because of the properties of the ε-machine this is the
maximal information that is possible to extract from the
chosen macro-observable and the specified initial parti-
tion of it.

D. Three stages of symbolisation

Summarising, we have arrived at the phase space par-
tition, obtained using three stages.

1. The observed macro-variable induces an initial
(usually very coarse grained) partition of the phase
space.

2. The cells of this partition are refined by the dynam-
ics (1).

3. The refined cells are grouped by the process of
ε-machine reconstruction, thus providing the final
partition that is the minimal, unique, and most in-
formative one.

E. Phase space exploration

The above reasoning is based on the assumption that
the trajectory is infinitely long and covers the whole avail-
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able phase space. Therefore, some estimations have to be
done as for how long should the trajectory be in the sim-
ulation that would correctly represent the covering of the
phase space. The first requirement is, obviously, that the
number of histories, {At}, be enough that the cells (1) are
populated with at least several histories each. Secondly,
if new pieces of the trajectory passing through the same
cells produce the same ε-machine that would signify that
we have a long enough simulation.

When the trajectory gradually fills the phase space
over longer times, there are two situations that can hap-
pen. Provided that we have a long enough trajectory
that satisfies the requirements above, with time the ε-
machine can change. This would mean that (i) the full
dimensional trajectory explores previously not visited ar-
eas of the phase space and (ii) the information about the
trajectory contained in the observable is different at these
new areas of the phase space.

III. MOLECULAR SYSTEMS AND SIGNAL
PROCESSING

Clusters of 3, 7, 15, and 52 water molecules in vacuum,
bulk water (periodic boundary conditions) consisting of
392 or 878 SPC or SPC-E [27] molecules, and bulk ar-
gon (Lennard-Jones particles) were simulated using the
GROMACS molecular dynamics [28] package. The temper-
ature of the systems was kept constant at 300K using
Berendsen [29] or Nose-Hoover [30] thermostats whose
combination with various coupling constants was inves-
tigated. A sufficient equilibration was performed before
collecting data for analysis.

We have chosen a 21-residue peptide A5(A3RA)3A
from the review [31] where it is reported to fold in 0.8 µs
on average. The forcefield for the simulations was GRO-
MOS96 [32]. The peptide was solvated by 1658 SPC wa-
ter molecules [27] and after proper minimisation of the
system’s energy was simulated for 0.5 µs. We have not
reached the folded state, however, prolonged periods of
the existence of β-sheet and α-helix motifs were recorded.
The velocities of one of the water hydrogens, and of the
nitrogens of the residues 1 and 3 were taken for the anal-
ysis (see Appendix B for the signal processing details).

As discussed, various molecular signals can be used for
the analysis, any such signal is a function of the micro-
state Q. For the studies reported in this paper we have
chosen the velocities and coordinates of various atoms
and the instantaneous temperature. As the initial par-
titioning (section II) we have used an approximation of
the generating partition (see Appendix B) that divided
the velocity space into three centrally symmetric sectors.

We have found (see Appendix C) that it is possible to
obtain consistent results provided that the correlations
in the molecular signal vanish at sub-picosecond times.
The details of the procedure of the initial symbolisation
are provided in Appendix B.

FIG. 4: Statistical complexity (top) and the logarithmic de-
pendence of Cµ (bottom) on the number of data points N
for the hydrogen velocity signal of bulk water at 300K. Top:
the curves, from green to black, correspond to the values of
the history length l from 2 to 10. Bottom: black, red, green,
and blue lines correspond to the alphabet size K = 2, 3, 4, 5
respectively.

IV. RESULTS

There are three parameters that can be adjusted in
the ε-machine reconstruction algorithm, CSSR: the size
of the alphabet for symbolisation K, the length l of the
histories {At} used for the reconstruction, and the total
length of the signal T . While Cµ practically converges for
l > 7 and K > 3 (see Appendix C), it shows non-trivial
dependence on the length of the signal (simulation time)
at surprisingly long times, Fig. 4.

Cµ quickly increases and then decreases eventually set-
tling on the log2 T -like curve at the times of ≈8 ns (this
depends on l). The curves keep growing in exactly the
same manner until the simulation times of 1 µs. The ini-
tial high values of Cµ are due to the effect of the lack
of data at small T when most of the sequences seen by
the algorithm are unique (see Appendix B 3 for the dis-
cussion on the requirements for the length of the signal).
The number of causal states, nst, at these values of T
is very high and each state consists of only a few histo-
ries, that is the first requirement from section II E is not
satisfied. This part of the curve is of little interest for
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FIG. 5: Top: the trajectory length dependence of Cµ for: blue
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constant growth

the present analysis and only the logarithmic part of the
curves are discussed here and this represents the main
phenomenon reported.

It should be emphasised that the length of the signal T
here corresponds to extremely long times. In a molecular
system such as bulk water no transient effects can be ex-
pected at these times, which is confirmed by the constant
value of the Shannon entropy of the symbolic sequence
itself (H[P (Ai)] = 1.58490 ± 0.00005 for t > 2 ns), as
well as unchanged velocity autocorrelation function.

While for the bulk water and other bulk liquids a per-
fect line on the log2T - Cµ plot is observed, the peptide
exhibits well pronounced periods with significantly dif-
ferent rates of the growth. Within one period the growth
can still be satisfactory fitted with a line. Importantly,
the changes between the periods are quite sharp such
that the whole curve is divided into well separated parts,
Fig. 5.

V. DISCUSSION

The analysis of the changes of Cµ with the length of
the history l shows that starting from the length 6 the
Cµ almost does not change, Fig. 4. This means that
this length of the history makes the partition as fine as
possible (see section II A). Further splitting of the phase
space cells does not provide any more information - the
following step of joining them by the causal states re-
verses the situation to the cell size approximately equal
to that of l = 6.

The fact of the growing number of causal states with T
is extremely interesting since it proves that the new phase
space areas visited by the trajectory are different from
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FIG. 6: hQ values (indicated on the right) for various observ-
ables of bulk water: black - the hydrogen velocity, red - the
oxygen velocity, and blue - the instantaneous temperature

those visited before. That is, even after several dozens
of nanoseconds the trajectory keeps exploring new areas.
Note that the phase space cells after stage 2 are exactly
the same for all times, what changes with T is the process
of coarsening, stage 3. The more data is available from
the trajectory exploration, more information about the
phase space is introduced and this information is different
in different areas of the phase space.

The slope, hQ, of the logarithmic part of Cµ(T ) can
serve as a measure of the rate with which the phase space
of the system is explored:

Cµ = a + hQ log2 T

The value of this characteristic is a fundamental prop-
erty of the system which does not seem to depend on
the details of the simulation model, the number of the
molecules (for bulk systems), and even on the temper-
ature. However, it does depend on the chemical nature
of the system, that is the values of hQ are different for
different chemical systems.

Another remarkable fact is that the rate of change of
Cµ is the same for very different macro-observables. The
complexity values were calculated for the velocities of
the oxygen and hydrogen atoms and the instantaneous
temperature in bulk water. The results are presented
in Fig. 6 and clearly show a good agreement in the hQ

values.
hQ values for other molecular systems differ from the

values shown in Fig. 6. For example, for liquid argon
hQ = 0.32, while for a cluster of three water molecules
in vacuum hQ = 0.90. Therefore, hQ seems to depend
on the nature of the molecular system, that is on the
system’s inter-particle interactions. It does not seem to
depend on the details of the simulation model or even
temperature. The results for bulk water presented in Ta-
ble I are comparable even though TIP3P water model and
bulk water at high temperature produce slightly higher
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TABLE I: hQ values for various MD models and temperatures
and for a set of independently simulated systems (see text).

MD model temperature, K hQ

TIP3P 300 0.78
SPCE 300 0.69
SPC 275 0.70
SPC 300 0.71
SPC 380 0.76
set 300 1.21

values of hQ.
The values of Cµ together with the corresponding val-

ues of hQ for the protein system are shown in Fig. 5.
Long periods of very slow changes of hQ are clearly vis-
ible. These periods signify that the trajectory is most
probably visits the same phase space areas, at least the
areas that do not introduce new information into the ve-
locity projection.

VI. CONCLUSIONS AND OUTLOOK

The application of a sophisticated statistical analy-
sis, Computational Mechanics, to molecular trajectories
shows that it is possible to extract a detailed information
about the whole dimensional trajectory by analysing low
dimensional observables such as velocities of atoms, their
coordinates, or the instantaneous temperature.

Most interestingly, we demonstrate that the trajectory
explores the phase space very slowly, at the time scale
of hundreds of nanoseconds. The new areas of the phase
space seen by the trajectory are different from the previ-
ously visited areas and carry different statistical informa-
tion. We have also found that the latter is very different
for various simple liquids and fundamentally different in
complex self-organising systems such as a peptide in wa-
ter.

These results show that when calculating the free en-
ergy from MD simulations the non-randomness of the
phase space exploration has to be taken into account.
The phenomenon can be related to experiments, the main
difficulty here is the requirement of the signal from a sin-
gle molecule, not an ensemble average, normally mea-
sured in the experiment. Good perspective in this con-
nection is in recently very active areas of single molecular
methodologies. The work on connecting our finding to
these experimental techniques is our current activity.
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APPENDIX A: COMPUTATIONAL MECHANICS

All past s−i and future s+
i halves of bi-infinite symbolic

sequences centred at times i are considered. Two pasts
s−1 and s−2 are defined equivalent if the conditional dis-
tributions over their futures P (s+|s−1 ) and P (s+|s−2 ) are
equal. A causal state ε(s−i ) is a set of all pasts equiv-
alent to s−i : εi ≡ ε(s−i ) = {λ : P (s+|λ) = P (s+|s−i )}.
At a given moment the system is at one of the causal
states, and moves to the next one with the probabil-
ity given by the transition matrix Tij ≡ P (εj |εi). The
transition matrix determines the asymptotic causal state
probabilities as its left eigenvector P (εi)T = P (εi), where∑

i P (εi) = 1. The collection of the causal states together
with the transition probabilities define an ε-machine.

It is proven [33] that the ε-machine is

- a sufficient statistic, that is it contains the com-
plete statistical information about the data;

- a minimal sufficient statistic, therefore the causal
states can not be subdivided into smaller states;

- a unique minimal sufficient statistic, any other one
simply re-labels the same states.

APPENDIX B: SIGNAL PROCESSING

1. Discretisation

Without any loss of dynamical information, an n-
dimensional trajectory of a dynamical system can be con-
verted to an (n− 1)-dimensional map using the Poincare
section. At the locations where the trajectory pierces the
Poincare section surface the points of the map are gener-
ated, thus sampling the continuous signal at discrete time
moments. However, the dynamics of the map is equiv-
alent to the original signal only if the full-dimensional
phase space trajectory is considered. For molecular sig-
nals when the 3-dimensional configuration (or velocity)
trajectory of one atom (or higher dimensional for a group
of atoms) is analysed the Poincare map is undefined.
However, a similar approach can be used to naturally
sample the roughly periodic signal of molecular systems.

To discretise the three-dimensional velocity trajecto-
ries of individual atoms of the molecular system we used
its intersections with the xy plane. For hydrogen water
atoms, for example, the average time interval between
the intersections was equal to 0.032 ps. Very conve-
niently it roughly corresponds to the first minimum on
the autocorrelation function, obeying the general rule for
time sampling of signals. The resulting two-dimensional
points approximately uniformly cover the area and form
a centrally-symmetric distribution of points, Fig. 7.
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2. Symbolisation

In order to convert the trajectory map into a sequence
of symbols from a finite alphabet, an appropriate par-
titioning of the continuous space is required. A natu-
ral choice for such partitioning is the generating parti-
tion (GP) [34] that has the property of a one-to-one cor-
respondence between the continuous trajectory and the
generated symbolic sequence. That is, all information is
retained after the symbolisation.

Consider a dynamical system xi+1 = f(xi), f : M →
M and a finite collection of disjoint open sets {Bk}K

k=1,
partition elements, such that for their closures M =
∪K

k=1B̄k. Given an initial condition x0, the trajectory
{xi}n

i=−n defines a sequence of visited partition elements
{Bxi}n

i=−n or {si}n
i=−n, where si are symbols from the

alphabet that mark the elements where xi ∈ Bi. For
a generating partition the intersection of all images and
pre-images of these elements is, in the limit n → ∞, a
single point: ∩n

i=−nf (−i)(Bxi
).

This elegant mathematical construct has two disadvan-
tages when applied to realistic molecular signals. First,
an algorithm for calculating a GP in a general case is un-
known. Second, it is shown for simple tent maps [35] that
the values of statistical complexity for different GPs of
the same system are different (a system can have many
GPs, not to confuse with the uniqueness of a symbolic
representation of a trajectory for a given GP).

Recently methods for finding approximations for GP
are reported. The method from [36] is shown to re-
produce GP for known systems and can treat multi-
dimensional observed time-series data. The results of
the application of this method to our velocity data using
2, 3, 4, and 5 partitions are shown in Fig. 7. For all
cases the resulting approximations to GP are centrally
symmetric (probably, because of the central symmetry
of the data points distribution). Thus, for our signals
we used centrally symmetric partitions in all subsequent
calculations.

Summarising, in converting the three-dimensional
molecular trajectories into symbolic sequences we, first,
built a two-dimensional map by finding the intersections
of the trajectory with the xy-plane and, second, assigned
a symbol to each point of the map depending to what
segment of the partition the point belongs.

3. Signal properties

In order to obtain statistically correct results the sym-
bolic signal should be long enough to satisfy the following
criteria [37].

It is demonstrated [38] that to consistently estimate
the probabilities of symbolic subsequence of length l
in a signal with entropy rate h (for blocks of symbols
sl ≡ s1, . . . , sl the entropy rate [39] of the entire infinite
sequence is defined as h ≡ liml→∞H[P (sl)]/l) the length
of the signal has to be at least 2hl.
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FIG. 7: Approximations for generating partitions obtained
using the method by Buhl and Kennel [36] for the discretised
hydrogen velocity for 2, 3, 4, and 5 partitions.

It is reasonable to require the length of the histories
l to be such that the time interval covered by l symbols
exceeds all correlations in the original signal. For the
hydrogen velocities example from Fig. 4 l = 0.2/0.032 ≈
6. For the same data the entropy rate is h = 1.56 (for
K = 3). Thus, the total sequence length should be longer
than 657 symbols, which is definitely the case since our
simulation times are of the order of nanoseconds, that is
millions of data points.

From these considerations it also follows that only the
signals with relatively short correlation times can be re-
liably analysed using computational mechanics. For ex-
ample, if the correlation time exceeds ≈0.5 ps that would
require more than 20 million points that corresponds to
the times ≈700 ns and becomes problematic for atomistic
MD simulations.

APPENDIX C: COMPUTATIONAL MECHANICS
PRODUCES CONSISTENT RESULTS

Two parameters of the algorithm should be set in cal-
culating Cµ of a signal of given length (we used a trajec-
tory of 30 ns long, that is ≈1 million data points), the
alphabet size K and the length l of the histories s− used
by the ε-machine reconstruction algorithm CSSR.

The dependence of Cµ on both parameters is shown
in Table II. The convergence with l is excellent, so that
for l ≥ 6 the algorithm produces almost identical results.
Reliable results for large alphabet sizes K are more dif-
ficult to obtain because for higher K the value of the
entropy rate h is also high. Therefore, much longer sig-
nals are required. This explains the somewhat increased
values of Cµ for K = 5 in Table II.

Varying the position of the Poincare section plane
along the z axes did not lead to any change in the results.



9

TABLE II: Statistical Complexity Cµ vs. the length of histo-
ries l (total signal length is 30 ns, K = 3) and the alphabet
size K (similar signal, l = 9) for pbc water hydrogen velocity
signal

l Cµ K Cµ

2 3.17 2 5.24
3 4.75 3 7.90
4 6.11 4 8.21
5 7.31 5 8.65
6 7.95
7 8.15
8 8.21
9 8.29
10 8.37

The effect of various partitionings of the continuous space
has been checked by applying non-symmetric (same as
symmetric but shifted along the x and y axes) partitions.
In all cases this resulted in lower values of Cµ. Any vari-
ants of centrally symmetric partitioning produced iden-
tical results. This, we believe, serve as further evidence
that the symmetric partition is a good approximation of
GP.
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