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Abstract It is shown that regimes with dynamical chaos are inherent not only to nonlinear
system but they can be generated by initially linear systems and the requirements for chaotic
dynamics and characteristics need further elaboration. Three simplest physical models are
considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators
is investigated. Analogous process is shown in the second model of electromagnetic wave
scattering in a double periodical inhomogeneous medium occupying half-space. The third
model is a linear parametric problem for the electromagnetic field in homogeneous dielectric
medium which permittivity is modulated in time.

Keywords Electromagnetic linear problems · Transients · Chaos

1 Introduction

It is generally accepted that chaotic dynamics and chaotic characteristics are inherent to
nonlinear systems only. Moreover, the emergence of dynamic chaos requires the appearance
of a local instability in the system and this instability has to be nonlinear (Lichtenberg and
Lieberman 1983). In this paper we show that the latter requirement needs further elaboration.

The dynamics of a system in quantum and classical regimes is a good example of the chaos
(in classical description) resulting from initially linear equations of quantum mechanics.
Non-trivial transformations of the latter obscure the nonlinearity of the classical equations of
motion. The investigations directed for establishing the correspondence between the quan-
tum and classical descriptions of chaotic systems are active for long time and they even have
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a special name, “quantum chaos”. Numerous publications are devoted to quantum chaos
(see, for example, [H.-J. Stoeckmann, Quantum Chaos: An Introduction, Cambridge Univer-
sity Press, 1999]; [M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer,
1990]). The purpose of this work is to turn reader’s attention to the fact that such situations
are frequent and require careful treatment.

Indeed, the equations of geometrical optics, which describe the chaotic dynamics of light
beams, are also derived from the linear Maxwell’s equations. The change of the dependent
variables can transform the initially linear equations into nonlinear ones that can have cha-
otic solutions and, therefore, should be investigated accordingly. This fact seems to escape
researches’ attention. Nevertheless, it should be taken into account in the analysis of a wide
range of physical processes.

In this paper we consider the simplest linear physical models where the described peculiar-
ity in the dynamics can be realized and we show that some physical variables characterising
such systems can exhibit chaotic dynamics (see also Buts 2006). Importantly, these types of
models are often used in the description of various physical processes.

First, we consider three linear interacting oscillators. Under some approximations the
same equations can be used to model electromagnetic wave scattering by double periodical
inhomogeneous medium occupying a half-space. The first period of inhomogeneity corre-
sponds to such a reciprocal lattice vector that the incident wave scattered by this period of
inhomogeneity generates a wave of the minus first order diffraction. Conditions for the exci-
tation of the same wave diffraction by the second period of the inhomogeneity are realized
with some detuning. Thus, we have a case of three-wave dynamical diffraction. Equations
describing the dynamics of the complex amplitudes of these three interacting waves are
linear. Therefore, their dynamics and all characteristics are, in general, regular. However, in
the case of a weak coupling between the waves a system of reduced equations for the real
amplitudes and phases can be obtained. This reduced system is nonlinear and it is simpler
than the initial one. This allows to obtain analytical criteria for the onset of the dynamical
chaos. This system has been investigated analytically and numerically in the present paper.
Qualitative agreement between the analytical and numerical results is obtained, namely, a sto-
chastic instability develops as soon as the conditions for the intersections of the heteroclinic
trajectories are fulfilled. In this case the spectra broaden, the correlation function decreases
and the real part of the maximal Lyapunov exponent becomes positive.

Second, we show that some important characteristics in the solutions of pure linear prob-
lems can have chaotic dynamics. It is caused by the fact that these characteristics themselves
are nonlinear. As an example, a linear parametric problem of the electromagnetic field in
the homogeneous dielectric medium which permittivity is modulated in time beginning from
some moment is considered. If the initial field is a plane monochromatic wave and the mod-
ulation is in the form of rectangular pulses then the problem has an exact analytical solution
which describes the temporal process of the wave transformation. Since, under the modula-
tion, the permittivity changes abruptly from the initial value to the new one and back then the
transformation process consists of a progressive repetition of the known effect of each wave
splitting onto a pair of forward and backward propagating waves at each jump of the permit-
tivity. Relationships between these wave amplitudes are obtained exactly in analytical form.
They reveal a controlling sequence which determines the whole behaviour of the relations
with time. The analysis shows that the temporal course of this sequence can have distinctly
non-regular behaviour, which chaotic character is confirmed by the Lamerey diagram, the
calculation of the Hurst exponent, the signal complexity, and the Lyapunov exponent. It is
shown that the Hurst exponent takes the values corresponding to the white noise, the signal
complexity rises and the Lyapunov exponent becomes positive.
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Wave chaotic behaviour generated by linear systems 589

2 Dynamic chaos in the interaction of three linear oscillators

Here we consider the simplest but very important physical system of three coupled linear
oscillators, in which the regime of chaotic dynamics can exist. The system Hamiltonian has
the form:

H =
2∑

i=0

[
p2

i /2 + ω2
i q2

i /2
] + q0

2∑

i=1

µi qi (1)

We consider the case when two oscillators are identical but the frequency of the third one
differs slightly from the frequency of the other two: ω1 = ω0 = ω,ω2 = ω + �ω. We also
assume that the interaction coefficients are small. In this case the dynamics is described by
the following system of equations:

q̈0 + q0 = −µ1q1 − µ2q2, q̈1 + q1 = −µ1q0, q̈2 + (1 + δ) q2 = −µ2q0, (2)

where q̇ ≡ dq/dτ, τ = ωt, δ ≡ 2�ω/ω, µi ≡ µi/ω
2, µi � 1, δ � 1, and the terms

proportional to (�ω/ω)2 are neglected. The dimensionless coefficients of the interaction are
introduced in (2).

Taking into account the fact that the right sides (the factors of connection) in the Eq. 2 are
small the solutions can be sought in the form:

qi = Ai (τ ) exp (iωi t), (3)

where the dependence of the complex amplitudes on time is caused by the connection between
the oscillators. If this connection is small then the amplitudes are slow varying functions and
the averaging method can be used. As a result we obtain the following system of reduced
equations for the amplitudes:

2i Ȧ0 = −µ1 A1 − µ2 A2 exp(iδτ)

2i Ȧ1 = −µ1 A0 (4)

2i Ȧ2 = −µ2 A0 exp(−iδτ).

The connection between the complex amplitudes follows from (4)

d

dτ

[
A2

0 − A2
1 − A2

2

] = 2 · µ2 · A0 A2 sin (δτ )

It follows from this equation that the system (4) has only one degree of freedom if detuning of
the frequency is equal to zero (δ = 0). Therefore, the development of dynamical chaos in this
system is impossible. In other cases the detuning determines a distance between nonlinear
resonances.

For further analysis we represent the complex amplitudes in the form:

Ai (τ ) = ai (τ ) exp(iϕ(τ)) (5)

where ai , ϕi are real amplitudes and real phases.
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Substitution of (5) into (4) gives the following system of equations:

ȧ0 = − (µ1/2) a1 · sin(�) − (µ2/2) · a2 · sin(�1) ,

ȧ1 = (µ1/2) a0 · sin(�) ,

ȧ2 = (µ2/2) a0 · sin(�1)

�̇ = (µ1/2)

(
a0

a1
− a1

a0

)
cos(�) − (µ2/2)

(
a2

a0

)
cos(�1) ,

�̇1 = (µ2/2)

(
a0

a2
− a2

a0

)
cos(�1) − (µ1/2)

(
a1

a0

)
cos(�) + δ, (6)

where � ≡ ϕ1 − ϕ0,�1 ≡ ϕ2 − ϕ0 + δτ .
The system (6) is a simplified one compared to the initial system (2) but it is nonlinear

and the dynamics of this system can be chaotic.

2.1 Analytical criterion for the onset of dynamical chaos

The analytical conditions for the dynamics of the nonlinear system (6) to be chaotic are of
great practical interest. To find these conditions we initially assume that there are only two
oscillators, the first and the second, and the third one is absent (A2 = 0). In this case it follows
from (4) that

A2
0 − A2

1 = const, (7)

therefore, the dynamics of the complex amplitudes A0 and A1 is very simple. They oscillate
with the frequency µ/2. On the contrary, the dynamics of the real amplitudes ai and the real
phases � and �1 is more complex. Indeed, the equation for the phase � is nonlinear

�̈ = −µ2
1

8

[(
a2

0 + a2
1

)2 + (
a2

0 − a2
1

)2

a2
0a2

1

]
sin(2�) (8)

and represents a well known equation for the mathematical pendulum. Thus, the behavoiur of
the real amplitudes ai is known qualitatively and consists of the following. Let only the first
oscillator have non-zero energy at the initial moment of time. Then the oscillation amplitude
of the second one is equal to zero. After some time interval (τ ∼ 2/µ1) the first oscillator
amplitude will become zero, while the second oscillator amplitude will achieve the maxi-
mum value which is equal to 1. Therefore, the absolute value of the expression in the square
brackets in (8) is always greater than 1. Consequently, the minimal width of the nonlinear
resonance can be estimated as � ∼ µ1.

Let us consider now the situation when the second oscillator is absent (A1 = 0) and there
is an interaction of the first and the third oscillators. In this case the equation for the phase
looks like

�̈1 = −µ2
2

8

[(
a2

0 + a2
2

)2 + (
a2

0 − a2
2

)2

a2
0a2

2

]
sin(2�1) − µ2δ

2

(
a2

0 − a2
2

a0a2

)
sin(�1). (9)

The Eq. 9 differs from the Eq. 8 by the presence of the last term which is caused by
detuning δ between the frequencies. The Eq. 9 represents the equation of nonlinear oscillator
also but its structure is considerably more complex than the structure of the nonlinear Eq. 8.
However, the qualitative dynamics of the real amplitudes ai are also known. Therefore, as in
the previous case, we can estimate the minimal width of the nonlinear resonance as �1 ∼ µ2.
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Wave chaotic behaviour generated by linear systems 591

It is natural to expect that when the nonlinear resonances are overlapped, i.e. when the
condition (µ1 + µ2) > δ is fulfilled, the dynamics of the system (6) will be chaotic. In the
next section we show that the numerical investigations confirm this conclusion.

2.2 Numerical investigations

The systems of Eqs. 2, 4 and the system (6) were investigated numerically. In all cases the
dynamics of the system described by the original systems of Eqs. 2 and 4 is regular: the
spectrum is narrow enough; the correlation functions oscillate, but their amplitudes do not
decrease; the maximum Lyapunov index is very small (|λ| < 10−4).

The dynamics of the system (6) is, however, qualitatively different. If the conditions
for overlapping the nonlinear resonances are fulfilled then the dynamics becomes chaotic.
Figures 1–5 represent the numerical results obtained for the system parameters δ = 0.017,
µ1 = 0.02, µ2 = 0.012, which provide the fulfilment of the conditions for the onset of the
dynamical chaos. The time behaviour of the real amplitude a0 in Fig. 1 and the phase � in
Fig. 2 show significant jumps of the phase caused by passing of the real amplitudes through
their minimal values.

The spectrum and the autocorrelation function for the first oscillator amplitude are shown
in Figs. 3 and 4. The spectrum is significantly broader in comparison with the case of
the original system. The correlation function decreases during the whole time interval of

Fig. 1 The evolution of the real amplitude of the first oscillator at δ = 0.1, µ1 = 0.2, µ2 = 0.2. The
conditions for the chaos onset are fulfilled

Fig. 2 The dynamics of the phase at δ = 0.1, µ1 = 0.2, µ2 = 0.2
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592 V. A. Buts et al.

Fig. 3 The spectrum of the first oscillator at δ = 0.1, µ1 = 0.2, µ2 = 0.2

Fig. 4 The autocorrelation function at δ = 0.1, µ1 = 0.2, µ2 = 0.2

Fig. 5 The main Lyapunov index as function of the location initial points in phase space at µ1 = µ2 = 0.2,
δ = 0.1
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Wave chaotic behaviour generated by linear systems 593

observations. Thus, the dynamical chaos regime is realized for these values of the system
parameters. It is confirmed by the maximum Lyapunov index. In Fig. 5 this index is plotted as
a function of the initial points locations on the (�, a0) plane. The Lyapunov index is positive
in the whole area considered.

3 Waves scattering in the medium with weak periodic inhomogeneous

Properties similar considered case of regular or chaotic dynamics in the system of three linear
coupled oscillators take place in a large number of other linear systems. Here we consider a
model of an electromagnetic wave scattering on a non-uniform dielectric medium filling the
half-space (z > 0 for unambiguity). The wave comes from the upper (z < 0) homogeneous
half-space. The wave electrical field satisfies the well known wave equation

�E + k2εE = 0, (10)

where k = ω/c.
We consider the case when the permittivity is described by the formula

ε = 1 +
2∑

i=1

µi · cos(�κi · �r) , (11)

It is assumed that the heterogeneity is small, µi � 1. In this case the electromagnetic wave
scattering gives diffracted waves of the minus first order of diffraction. The complete field
can be represented in the form

E =
2∑

i=0

Ei =
2∑

i=0

Ai (z) · exp
(

i �ki �r
)
. (12)

The first term in (12) corresponds to the falling wave, the second and third ones correspond
to the minus first order of diffraction by the first and the second heterogeneities accordingly.
Let the relation between the wave vectors satisfy the following expressions

�k1 = �k0 − �κ1, �k2 = �k0 − �κ2 + �δ, �δ = (0, 0, δ) . (13)

In this model we consider the case when all the wave amplitudes depend only on the
coordinate z directed into the lower half-space. Substituting (11) and (12) into the wave
equation 10 and applying averaging to find the slow varying amplitudes of the interactive
waves we obtain the following system of equations:

2i A′
0 = µ1 A1 + µ2 A2 exp(iδz),

2i A′
1 = µ1 A0 · (k0z/k1z) , (14)

2i A′
2 = µ2 A0 · (k0z/k2z) exp(−iδz),

where A′ ≡ d A/dz and the following dimensionless parameters and independent variables
are introduced: µ1 ≡ µ1 · k/k0z , µ2 ≡ µ2 · k/k0z , δ ≡ δ/k, z ≡ k · z.

The system (14) is similar to the system of Eq. 4 if the derivative with respect to time
is substituted by the derivative with respect to the coordinate z. Therefore, the dynamics
of the systems (4) and (14) has the same qualitative description. They both have the areas
of parameters, in which their behaviour is chaotic. The chaos criterion, for example for the
system (14), in the symmetric case (µ1 ≈ µ2 = µ) is given by the inequality:

δ < (k2 · µ)/4
√

k1z · k2z . (15)
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4 Parametric phenomenon

As the third example, a linear parametric problem for the electromagnetic field in the homo-
geneous dielectric medium which permittivity is modulated in time beginning from some
moment is investigated. Parametric phenomena in active media have been attracting much
attention for a long time in connection with the transformation of electromagnetic waves by
the time variation of the medium parameters. In the systems with distributed parameters main
features of the wave transformation by the medium nonstationarity can be revealed when a
simple law changes the medium parameters such that an exact solution of the problem can
be constructed.

In this paper the electromagnetic wave transformation in a medium which parameters
undergo changes in a form of a finite packet of periodic rectangular pulses is considered.
Regularity of the transformation is estimated by three characteristics, the Hurst’s index (Hurst
et al. 1965), the signal complexity (Crutchfield and Young 1989) and the Lyapunov exponent
(Lichtenberg and Lieberman 1983; Kuznetsov 2000).

Such a model allows to carry out the exact investigation of the process. If the initial field
is a plane monochromatic wave and the modulation is in the form of rectangular pulses then
the problem has an exact analytical solution which describes the temporal process of the
wave transformation. Since under the modulation the permittivity changes abruptly from the
initial value to the new one and back then the transformation process consists of a progres-
sive repetition of the known effect of each wave splitting onto a pair waves at each jump
of the permittivity. These waves propagate in the opposite directions and their frequencies
change by a jump periodically also from the initial value to the new one and back. The wave
amplitudes undergo sophisticated transformations with the increase of time (the number of
the permittivity jumps). However, they are the solutions to the linear electrodynamics wave
equations with variable coefficients. Since the essential feature in this process is the wave
splitting (the wave reflection in time) then it is interesting to observe a change of relationship
between the amplitudes of the forward and backward waves in the transformation process.
These relations are obtained exactly in an analytical form.

4.1 Wave transformation under medium modulation

4.1.1 Step by step wave transformation

We consider an unbounded dielectric dissipative medium, the permittivity and conductivity
of which are modulated according to the law of a finite packet of N rectangular periodic
pulses:

ε(t) = ε + (ε1 − ε)

N∑

k=1

{θ(t − (k − 1)T ) −θ(t − T1 − (k − 1)T )}

σ(t) = σ1

N∑

k=1

{θ(t − (k − 1)T ) −θ(t − T1 − (k − 1)T )} (16)

Here, θ(t) is the Heaviside unit function, T is the duration of the period of the parame-
ters change, T1 is the duration of the disturbance interval, in which the medium permit-
tivity and conductivity receive new magnitudes ε1 and σ1. Further, we normalize all time
variables to a frequency ω of the initial wave, t → ωt . This wave exists before zero mo-
ment of time, the moment when the modulation commences, and is given by the function
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Wave chaotic behaviour generated by linear systems 595

E0(t, x) = exp[i(t − kx)] in normalized variables. Each time jump of the medium proper-
ties changes the electromagnetic field, such that it is described by the functions En on the
disturbance intervals and by Fn on the inactivity intervals where the medium permittivity
and conductivity return to the initial magnitudes.

After beginning the modulation by the disturbance interval the initial wave is splitting into
two, forward and backward, waves E1 = exp (−st − ikx)

[
C1 exp(iqt) + D1 exp(−iqt)

]

with new amplitudes and the new normalized frequency q = (a2 − s2)
1
2 where a2 =

ε/ε1, s = σ1/ωε0ε, and ε0 is the vacuum permittivity. On the remaining undisturbed
interval of this first modulation period the field splitting into two waves remains F1 =
exp(−ik)

[
A1 exp(i t) + B1 exp(−i t)

]
but the frequency returns to the original one.

The field on the other disturbance intervals consists also of two, forward and backward,
waves En = exp(−st − ikx)

[
Cn exp(iqt) + Dn exp(−iqt)

]
of changed frequency while

the field on the inactivity intervals consists of two waves also Fn = exp(−ikx)
[
An exp(i t)+

Bn exp(−i t)
]

but of the unchanged frequency. Therefore, the transformed field at any moment
t in the N th modulation period is given by the formula

E(t, x) =
N∑

n

Enθ(t − (n − 1)T ) −
N∑

n

{Enθ(t − nT1 − (n − 1)(T − T1))

−Fnθ(t − nT1 − (n − 1)(T − T1)) + Fnθ(t − nT )} (17)

The exact expressions for the direct and the inverse secondary wave amplitudes are given in
(Nerukh 1999; Ruzhytska et al. 2003)

4.1.2 Parameters of transformation

Wave reflection in time can be characterized by a temporal reflectance as the ratio of the
backward (inverse) and forward (direct) wave amplitudes. In (Nerukh 1999; Ruzhytska et al.
2003) it is shown that these ratios are determined by the expressions:
on the disturbance intervals

wN = DN

CN
e−i2(N−1)qT = {p2 + (p1 − p2)rN−1}α21 + p1 p2α22

{p2 + (p1 − p2)rN−1}ε11 + p1 p2α12
; (18)

on the inactivity intervals

pN = BN

AN
e−i2N T = p1 p2

p2 + (p1 − p2)rN
, N ≥ 2. (19)

Here, p1 = −h/m, p2 = −h(m + m∗)/(hh∗ + m2), A1 = m exp(−iT ), B1 = −h exp(iT ),
α11 = q + 1 + is, α12 = q − 1 + is, α21 = q − 1 − is, α22 = q + 1 − is, and

m = 1

2q

[
2q cos(qT1) + i(a2 + 1) sin(qT1)

]
exp[−sT1 + i(T − T1)] (20)

h = i
1

2q

(
a2 − 1 − i2s

)
sin(qT1) exp[−sT1 − i(T − T1)]. (21)

As it follows from (18) and (19) the behaviour of the ratios wN and pN is governed by
the sequence

rN+1 = 4u2/(4u2 − rN ), (22)
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r r

rrn n

n+1
n+1

h

11

r* hhr** r*

Fig. 6 The Lamerey diagram for the controlling sequence: (left) for the generalized parameter u > 1; (right)
for u < 1

which is controlled by the generalized parameter

u = cos(qT1) cos(T − T1) − a2 + 1

2q
sin(qT1) sin(T − T1). (23)

The analysis shows that the temporal course of the controlling sequence can have a mono-
tone, non-monotone but regular, and distinctly non-regular character depending on the gen-
eralized parameter value. In the last case the non-regularity has a form of chaotic behaviour
that is visually confirmed by the Lamerey diagram, Fig. 6. There are long intervals in the
sequence of the modulation periods where rN changes almost regularly. After this interval
the relatively short intervals of strong irregular behaviour of rN take place. Larger devia-
tions of u2 from 1 lead to more irregular behaviour of rN . This phenomenon can be termed
“quasi-intermittency”.

The similar behaviour takes place for the transformed field. If u2 > 1 it has the regular
character with time as well as the sequence rN , Fig. 7a. Otherwise, if u2 < 1, the sequence
as well as the field have irregular behaviour, Fig. 7b.

4.2 Characteristics of chaotic dynamics

4.2.1 The Hurst’s index

The presence of the quasi-intermittency can be confirmed by the Hurst’s method (Hurst et al.
1965), according to which the time series of rn is characterized by the Hurst’s index H , which
is determined as the asymptotic value of the function

H ∼ ln(Rn/Sn)/ ln n (24)

where Rn = max X (k, n)
1≤k≤n

− min X (k, n)
1≤k≤n

, and

X (k, n) =
k∑

i=1

(ri − 〈r〉n), 〈r〉n = 1

n

n∑

i=1

ri , Sn =
√√√√ 1

n

n∑

i=1

(ri − 〈r〉n)2. (25)

For the white noise (a completely uncorrelated signal) this index equals to H = 0.5. The
value H > 0.5(H < 0.5) is associated with the long-range correlation when the time series
exhibits persistence (antipersistence).
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Wave chaotic behaviour generated by linear systems 597

a

b

Fig. 7 The behaviour of the transformed field with time. (a) Parametric amplification, (b) irregular changing

The chaotic character of rN is demonstrated by the calculation of the Hurst’s index. It can
be seen from Fig. 8 that the decrease of the generalized parameter leads to a situation when
the Hurst’s index takes magnitudes corresponding to the white noise, H > 0.5.

4.2.2 The signal complexity

The rN behaviour can be also characterised by a complexity measure (Crutchfield and Young
1989). This measure of complexity shows how much information is stored in the signal and
how much information is needed to predict the next value of the signal if we know all the
values up to some moment in time. In two limiting cases, when a signal has constant value
at all times and when the signal is completely random, a complexity is equal to zero in this
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598 V. A. Buts et al.

Fig. 8 The detailed behaviour of Hurst’s index versus the duration of the disturbance interval (the parameter
u is given in the upper diagram)

framework because of no information about the previous evolution needed to predict the
signal in both cases. All intermediate cases have a finite, non-zero value of the complexity.

The algorithm of computing the finite statistical complexity (Nerukh et al. 2002) follows
the method originated in the works by Crutchfield and others and it consists of considering
the symbolic subsequences that form the dynamical ‘states’ of the system and the time evo-
lution, which is described as transitions between these states with some probabilities Pi . The
finite statistical complexity is calculated by the formula:

C = −
∑

i

Pi log2 Pi . (26)

The dependence of this measure on the modulation period shows a correlation between
the complexity and the generalized parameter u, Fig. 9. The electromagnetic signal is regular
and its complexity drops to zero when the absolute value of the generalized parameter u (the
dash-dot sine-like line) becomes greater than 1.

In this case the value of the H index is typical for the regular behaviour. The complexity
drops to zero when the Hurst’s index deviates notably from the value of 0.5 (in average) that
corresponds to regular behaviour of the signal, Fig. 8. Thus, the correlation exists between
the Hurst’s index and the complexity of the signal and it corresponds to the behaviour of these
two characteristics and the sequence rn . Both characteristics correlate with the generalized
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Wave chaotic behaviour generated by linear systems 599

Fig. 9 The behaviour of the complexity versus the modulation periods (the parameter u is shown by the
dash-dot sine-like line)

parameter u. This is true for both cases when the medium becomes more, a < 1, or less,
a > 1, optically dense on the disturbance intervals.

4.2.3 The Lyapunov exponent

The behaviour of rn can be quantified by the Lyapunov exponent. Let us derive the estimation
of this exponent as in (Kuznetsov 2000). For this, we consider two nearby trajectories rn and
r ′

n = rn + r̃n of recurrence mapping rn+1 = f (rn) given by the formula (22). Using the
Taylor’s series expansion of (22) one can derive

r̃n+1 = r̃1/(u
2n + B1u2(n−1) + · · · + Bn−1) (27)

where Bi are some coefficients that do not depend on u.
The Lyapunov exponent is determined by the evolution of the small disturbance in linear

approximation as

 = _
lim

n→∞
1

n
ln ‖r̃n‖ (28)

Substitution of r̃n from (27) gives, at least for u2 > 1,

 ≈ _
lim

n→∞
1

n
ln

∥∥∥r̃1/u2(n−1)
∥∥∥ = _

lim
n→∞

(
ln ‖r̃1‖ /n − n − 1

n
ln

∥∥u2
∥∥
)

= − ln
∥∥u2

∥∥ (29)

Therefore, the Lyapunov exponent is negative if u2 > 1. If one assumes that the estimation
(29) is true for u2 ≤ 1 (which is not evident) than the Lyapunov exponent becomes positive.
This analysis is confirmed by the direct calculation of the Lyapunov exponent by the formula
(28), according to which its magnitudes become negative beginning from the generalized
parameter value of u ≈ 0.5.
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600 V. A. Buts et al.

Fig. 10 Dependence of the Lyapunov exponent on the generalized parameter

Figure 10 shows that the Lyapunov exponent becomes positive for u ≤ 0.6. In the region
∼ 0.6 < u < 1 there is a set of intermittent intervals of chaotic and non-chaotic behaviour
of the Lyapunov exponent. For u > 1 the Lyapunov exponents become strictly negative.

5 Conclusion

The three simplest linear physical models where the chaotic dynamics can be realized are
investigated: three linear interacting oscillators, electromagnetic wave scattering in a double
periodical inhomogeneous medium occupying half-space and an electromagnetic field in
homogeneous linear dielectric medium which permittivity is modulated in time.

It is shown that these linear systems and some their characteristics can have chaotic behav-
iour. It is worth to note that these types of models are often used in the description of various
physical processes.

One can conclude that the change of the dependent variables can transform the initially
linear equations into nonlinear ones that can have chaotic solutions. The chaotic behaviour
may reflect also the fact that the new variables themselves satisfy nonlinear equations.

Chaotic dynamics generated by linear systems allows to reveal unknown features of such
systems that may be useful for their better and more complete understanding. Moreover,
methods of statistical physics can be used for the investigation of the system characteristics
in the regime of dynamical chaos.
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