
Hindawi Publishing Corporation
Journal of Atomic, Molecular, and Optical Physics
Volume 2012, Article ID 589651, 6 pages
doi:10.1155/2012/589651

Research Article

Statistical Complexity of Low- and High-Dimensional Systems

Vladimir Ryabov1 and Dmitry Nerukh2

1 Department of Complex System, School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-Cho,
Hakodate-Shi, Hakodate, Hokkaido 041-8655, Japan

2 Non-Linearity and Complexity Research Group, Aston University, Birmingham B4 7ET, UK

Correspondence should be addressed to Dmitry Nerukh, d.nerukh@aston.ac.uk

Received 2 January 2012; Revised 5 April 2012; Accepted 5 April 2012

Academic Editor: Keli Han

Copyright © 2012 V. Ryabov and D. Nerukh. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We suggest a new method for the analysis of experimental time series that can distinguish high-dimensional dynamics from
stochastic motion. It is based on the idea of statistical complexity, that is, the Shannon entropy of the so-called ε-machine
(a Markov-type model of the observed time series). This approach has been recently demonstrated to be efficient for making
a distinction between a molecular trajectory in water and noise. In this paper, we analyse the difference between chaos and
noise using the Chirikov-Taylor standard map as an example in order to elucidate the basic mechanism that makes the value
of complexity in deterministic systems high. In particular, we show that the value of statistical complexity is high for the case of
chaos and attains zero value for the case of stochastic noise. We further study the Markov property of the data generated by the
standard map to clarify the role of long-time memory in differentiating the cases of deterministic systems and stochastic motion.

1. Introduction

Statistical complexity is a measure that had been introduced
by Crutchfield and Young in 1989 [1]. It has been proven
useful for describing various complex systems, including
those with hundreds of degrees of freedom [2]. According
to our earlier paper [3], the statistical complexity of high-
dimensional trajectories generated by the dynamics of an
ensemble of water molecules grows up to the time scale
of 1 microsecond, that is, an extremely long-time interval
for a typical molecular dynamics simulation. Moreover, this
property is much less pronounced for so-called surrogate
time series that have exactly the same power spectrum and,
hence, autocorrelation function as the original time series.

For example, in Figure 1 we plot the dependence of
statistical complexity on the length of the time series for
the symbolic data obtained from a Poincaré the section of
3D velocities describing the motion of a hydrogen atom
in an ensemble of 392 water molecules [3]. The details of
computing the atomic trajectories as well as the method used
for partitioning the phase space and obtaining a symbolic
string from the initially floating point data can be found in
[4]. In the same figure, we draw the curves calculated for

so-called phase-shuffled surrogate time series [5], the data
having identical autocorrelation function, and hence power
spectrum as the original velocity trajectories. One can notice
significant differences between the statistical complexity of
the physical and the artificially generated data.

We then put forward a hypothesis that this property,
that is a high value of statistical complexity, can be used for
distinguishing between deterministic and stochastic systems
(see also [6]). The phenomenon of the complexity growth
with the length of time series that ensures the difference
between the cases of deterministic and stochastic behaviour
remains still unexplored. In order to elucidate the mecha-
nism that makes the value of complexity high, we performed
numerical experiments with the standard map (known also
as the Chirikov-Taylor map) [7], one of the most studied
paradigmatic models in nonlinear dynamics. We observed
that statistical complexity was high indeed in the case of the
standard map, and it had much lower value for the surrogate
time series, being close to zero for the case of noncorrelated
noise from a random number generator.

For the purpose of estimating statistical complexity for a
symbolic time series, we utilize the CSSR algorithm [8] that
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Figure 1: Statistical complexity versus the (log of) length of the
analysis interval for the hydrogen velocity time series (top curve)
and four surrogate time series (bottom curves): three independent
realisations of the phase-shuffling algorithm (red, green, and blue),
and single time series of a white noise passed through a low-pass
linear filter (black) (from [3]). Note that the value of statistical
complexity for the data obtained from simple random number
generator is close to zero and does not depend on the length of time
series for large enough value of the latter (not shown).

had been reported as an efficient, reliable, and easy to use
software. The algorithm constructs an ε-machine, a Markov-
chain with l-step memory, which constitutes a probabilistic
model for the analysed data series. Statistical complexity
measures an information content of the ε-machine via
its Shannon entropy. Our analysis shows, however, that
although the CSSR algorithm always converges well and
produces a finite value of complexity, in some cases the
approximation of data with a Markov-chain-type model
is inadequate, making the complexity value dependent on
the length of the analysed data. Finally, we came to the
conclusion that, at least in the case of standard map, the
main reason for the growth of complexity is the property
of stickiness of periodic islands in the chaotic sea, a generic
phenomenon in Hamiltonian systems [9]. It has been noted
in [10] that due to the sticking property of the regular
component in a subcritical domain (K < 0.9716), the
dynamics of the standard map is subdiffusive that can be
well approximated with a continuous time random walk
model. Anomalous properties of the temporal behaviour
of nonextensive entropy, a generalization of the usual
Boltzmann-Gibbs entropy, have been also analysed in [11].

In the present work, we mainly study the domain of
K � 1 where the area occupied by periodic islands is small,
and the chaotic motion can be expected to be strongly mixing
and ergodic. Nevertheless, as our results show, the presence
of stickiness is still an important factor defining the long-
term statistical measures. In terms of the CSSR algorithm,
the property of stickiness breaks the independence of the data
points separated by a history long-time interval, thus making
the Markov-chain approximation invalid.

Finally, we discuss a conjecture that the property of
the non-Markovianity of the ε-machine and growth of

statistical complexity can be used in a constructive way
for distinguishing deterministic and stochastic behaviours.
The problem of detecting determinism in a noise looking
chaotic time series is a long standing one. An extensive review
of the issues related to the difference between chaos and
noise and to inherent difficulties encountered in the high-
dimensional cases can be found in [12]. We suggest that there
is a significant difference between the statistical complexities
of Hamiltonian chaos and coloured noise with identical
power spectrum, the main reason for which consists in the
presence of the long-time memory in time series obtained
from Hamiltonian systems. This property originates from the
stickiness of periodic islands that are abundant in the chaotic
sea due to multiple resonances that occur in the phase space.

We would also like to note that since the phase space of
Hamiltonian systems has a complicated structure of chaotic
areas intermingled with periodic islands, this leads in some
cases to the necessity of distinguishing between chaos and
complex quasiperiodic motion. A measure called orbital
complexity had been introduced for this purpose in the
context of analysing the orbital motions of planets [13–15].
This measure, although being based on the calculation of
the Shannon entropy (but in the spectral domain), has
quite different meaning, purpose, and scope of applicability
compared to statistical complexity.

2. Systems and Method of Analysis

The standard map is defined as

pn+1 = pn + K sin θn mod 2π,

θn+1 = θn + pn+1 mod 2π,
(1)

where K is a single parameter defining the dynamics of
this system. In all the calculations below, the value of the
parameter K has been chosen at K = 6.908745.

First, at the step called “symbolization,” the original real-
valued time series is transformed to a symbolic sequence
by introducing a suitable partitioning of the phase space
(Figure 2(a)).

At the next stage, the sequence of symbols is transformed
to the sequence of histories, the l-symbol strings representing
a refinement of the partitioning in the phase space [3].
ε-machine reconstruction requires a grouping of histories
to “causal states,” based on the analysis of the predictive
properties of each history by one step forward in time.
Finally, the statistical complexity is calculated from the ε-
machine as Shannon entropy of the probability distribution
of the causal states:

Cμ = −
Nc∑

i=1

pi log pi, (2)

here pi are probabilities of the causal states in the ε-machine,
and Nc is the total number of the causal states.

3. Numerical Experiments

We have calculated the statistical complexity using the
algorithm called CSSR [8] for the standard map and plotted
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Figure 2: The standard map. Symbolization with a three-symbol
alphabet (a). Two periodic islands are embedded into the chaotic
sea. One of them zoomed is shown in (b).

the graphs of complexity versus the amount of data (the
length of symbolic sequence). We have also studied how the
calculated values depend on the method of partitioning the
map, initial conditions, and the parameter K of the system.

A typical plot of statistical complexity Cμ and the number
of causal states for the history length l = 2 · · · 9 are shown
in Figure 3.

The results for the surrogate data generated using the
same trajectory of the standard map are shown in Figure 4.
Changing the initial conditions, the type of partitioning the
phase space at the stage of symbolization, and/or value of
the parameter K brings qualitatively the same results, that is,
there is a significant difference between the complexity values
calculated for the data obtained from the map and those for
the surrogate time series. It should be noted though that the
complexity value moderately increases with parameter K as
shown in Figure 5. This behaviour is similar to that of other
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Figure 3: The values of Cμ and the number of causal states for
various history lengths (from bottom to top l = 2 · · · 9) for the
standard map trajectory as a function of the data length.

219 221 223 225 227

12

9

6

3

C
μ

(a)

219 221 223 225 227
0

N
c

Number of data points

900

600

300

(b)

Figure 4: Same as in Figure 3 but for the random surrogate.
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Figure 5: Dependence of statistical complexity on the parameter K
(the number of data points is 108).
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Figure 6: Conditional distributions of the next symbol for all
histories at history length l = 8. Every point represents a history.
The total number of points (histories) is 38.

characteristics used in nonlinear dynamics, like Lyapunov
exponents or measure of the chaotic area reported in [16].

4. A Hypothesis on Markov Property

In this section, we would like to demonstrate that the large
complexity values observed in the case of the standard map
are caused by the presence of certain segments in the chaotic
trajectory (which become histories after symbolization) that
do not possess a property necessary for building a Markov-
chain from the data. Consider the stage when the symbolic
string has been converted to the sequence of histories, that is,
symbolic words of length l. The Markov-chain (ε-machine)
can be built from such a sequence, if the conditional
probability distribution of the next symbol in the symbolic
sequence depends only on the l-symbol string preceding the
symbol, and it is independent on the previous symbol, that
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Figure 7: Conditional probability distribution for the history with
the largest deviation from the Markov property (black triangle).
Adding a symbol to the history changes drastically the position of
the point in the diagram. Three circles correspond to adding “0,”
“1,” or “2” to the history l = 8 (crosses). The red triangle represents
a randomly chosen history with clear Markov property, that is, the
distribution of probabilities does not depend on the added symbol.

is, the symbol that occurred l + 1 time steps before. In other
words, if we consider the conditional probability distribution
for a given history, it should not change (in statistical sense),
if we increase the length of a history by one symbol to the
past.

In Figure 6, we present a scatter diagram that demon-
strates the distribution of the conditional probabilities for
each history at the history length l = 8. Every point in the
diagram corresponds to a single history. The large spread
around the point with coordinates (1/3, 1/3) evidences
significant difference compared to the case of uniform
distribution. The change from l = 8 to l = 9 does not change
the overall pattern of point distribution shown in Figure 6.
However, the analysis of the conditional probabilities for
individual histories reveals huge changes in the position of
points depending on the extra symbol added at the beginning
of the history. In Figure 7, we depict the conditional distri-
bution for the next symbol for two histories: one that shows
strong deviation from Markov property and a “normal” one,
that is, a randomly chosen history. The large deviation in the
distribution of conditional probabilities can be concluded
from a big distance between the vertexes of the upper triangle
(distribution of the conditional probabilities at l = 9) and the
cross corresponding to the conditional probability at l = 8.
The probabilities at l = 9 are computed by adding one of the
three symbols (012) at the beginning of the history of l = 8.

Finally, we would like to show that the segments of
chaotic trajectories that correspond to the history with large
deviation from the Markov property are located in the areas



Journal of Atomic, Molecular, and Optical Physics 5

0.4

0.3

0.2

0.3 0.4

P
(1
|←− s

)

P(0|←−s )

3

2

1

0

−3

−2

−1

3210−3 −2 −1

q

P

Figure 8: Parts of chaotic trajectory corresponding to the history
with large deviation from the Markov-chain property. Only points
corresponding to the central three symbols in the history are shown.
Apparently, the history includes one of the two periodic islands
shown in Figure 2.

of the phase space close to periodic islands. For this purpose,
we plotted in Figure 8 only the points that correspond to
the history with large deviation from the Markov-chain
property. A comparison to Figure 2 suggests that the history
with large deviation in the distributions is located close to
the periodic islands. Therefore, we suppose that the breaking
of Markovianity can be interpreted as a manifestation of the
well-known phenomenon of “stickiness” [9] of trajectories
in the areas close to periodic islands. Prolonged wandering
of a trajectory around the island is equivalent to existing
of long-time memory in the corresponding segments of
the chaotic time series. Figure 8 should be also compared
to Figure 9, which presents the segments of the chaotic
trajectory corresponding to a history possessing the Markov
property. Apparently, it has no relation to periodic islands.
Such histories represent a vast majority in the ensemble of
3l histories, the non-Markovian histories constituting only a
fraction of percent.
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Figure 9: Parts of chaotic trajectory corresponding to the history
with no deviation from the Markov-chain property. Only points
corresponding to the central three symbols in the history are shown.
Apparently, the history does not include any of the two periodic
islands shown in Figure 2.

5. Discussion

It has been demonstrated in this paper that statistical
complexity appears to be a useful measure for distinguishing
Hamiltonian chaos in low- and high-dimensional systems
from correlated noise with identical autocorrelation func-
tion. Its value for the symbolic time series calculated from
the dynamics of Hamiltonian systems is substantially larger
than that for a white noise time series or the time series
obtained from the phase shuffling surrogate algorithm. Our
explanation of the origin of this phenomenon in terms
of Markov-chain theory consists in breaking down the
Markov property by the symbolic sequences obtained from
Hamiltonian systems.

We believe that the large value of complexity observed
in our numerical experiments is defined by the presence
of periodic islands with sticky borders in the phase space
of Hamiltonian systems. The stickiness of certain areas in
the phase space leads to long-time memory effects that are
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responsible for breaking down the statistical independence
of the future states from the past ones. This, in turn, makes
the procedure of grouping the histories into causal states
constituting the core of CSSR algorithm unstable. As a result,
the algorithm finds more and more causal states necessary
for building the ε-machine as a Markov chain, and the value
of complexity grows with the number of causal states.
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