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The problem of the uniqueness of parameters obtained during Ðtting of experimental spectra containing closely
overlapping bands has been evaluated, since conventional methods of Ðtting do not produce reliable results. It
is here shown that, despite the difficulties inherent in both the formal mathematical problem and its numerical
solutions, typical and representative spectra can be resolved unambiguously within a reasonably chosen
theoretical model. Reliable values of the parameters of the model, including parameters of band shape, can also
be obtained. A random search method of global minimisation of a function with a signiÐcant number of
arguments is derived. A program and algorithm to implement this method for spectra decomposition have
been developed. The program allows the microdynamics of liquids to be obtained directly upon performing
numerical Fourier transformations on a model (theoretical) time correlation function together with using
model spectra obtained thereby in each Ðtting step. A model spectrum for any desired accuracy and frequency
range can hence be generated without the unavoidable errors inherent in conventional methods. The apparatus
function of the spectrophotometer is also now readily incorporated. Using the algorithm, the parameters of the
microdynamics of acetonitrile molecules are obtainable for the Ðrst time upon decomposition of its Ramanl2
vibration, and a value of 0.069 was obtained for the dimensionless modulation speed in liquid acetonitrile. This
method has also enabled for the Ðrst time the detection of molecules in the second solvation shell around Li`
in acetonitrile, from within its Raman spectrum.

When experimental spectra are resolved into separate bands
the quality of the Ðt and information available from the
parameters obtained have often not been (fully) explored.
Generally, in-house and commercial software use standard
least squares methods and only traditional methods of non-
linear local minimisation are exploited. If the minimisation is
repeated, with di†erent initial values of the various param-
eters, substantially similar results should be obtained. Unless
tests for the uniqueness of parameters are performed the
parameters of complicated models, consisting of many bands
of complex shape, may be used uncritically in the interpreta-
tion of experimental spectra.

The problem of Ðtting experimental data to theory is not
trivial, even for the simplest band shapes. The real problem, in
studying ““complex ÏÏ bands, is to obtain certain characteristics
of their shape as well as their positions, heights and widths.
Knowledge of the shape of each band is frequently required
for the model spectrum to be relevant to the experimental one.
In addition, obtaining band shapes is, in many cases, the main
purpose of the investigation as, for example, for the investiga-
tion of dynamic properties. This problem of band shape is
usually avoided by using one that is as simple as possible.1
Generally, Lorentz and Gauss shapes are tested Ðrst and the
one that Ðts best taken as the ““ true ÏÏ shape. This approach
does result in reliable parameters, but obviously limits the
extraction of the dynamic properties contained in the experi-
mental data.

The properties of the minimising function play a key role.
From general considerations, and based on numerous calcu-
lations, we found that the source of the band shape problem is
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the weak dependence of the optimising function upon the
Ðtted parameters, because a large number of Ðtting param-
eters is involved. Also, as well as function non-linearity, there
is a strong dependence of one parameter upon another. We
shall here show that the minimising function also has several
local minima, and that this makes local minimisation methods
unworkable.

Besides the technical, purely numerical problems of Ðnding
the minimum of the sum of squares of deviations (SSD), there
are difficulties in interpreting the parameters obtained. The
global minimum does not necessarily give the most reasonable
parameters : if, for example, we have a set of several local
minima, close in SSD, the values of the parameters covering
all these minima should be considered equally true. This is
tightly connected to the problem of choosing a proper theo-
retical model for Ðtting. If the model is overestimated, i.e., too
detailed, the appearance of such local minima and uncer-
tainties in the values of the parameters are highly probable.

This study describes, and illustrates progressively through
examples, a new optimisation method that elucidates compli-
cated proÐles of spectra, and the principles involved. Particu-
lar attention is given to extracting the parameters of
microscopic dynamics from vibrational spectra because this is
directly concerned with the problem of obtaining line shapes.

Problem description
The basic problem is to calculate the values of the parameters
of the chosen model, not to elucidate the model itself, nor
determine the number of bands and the expressions for their
shape from the experimental spectra. We use the word
““model ÏÏ to mean the theoretical description of the number of
bands and the mathematical expressions of their shape. The
number and expressions for these bands have Ðrst to be
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chosen, based initially on external information such as gas
phase spectra, theoretical considerations or past experience.
Generally the simplest reasonable model is tested Ðrst, and
then improved (redeÐned) iteratively until it provides the best
possible approximation to the experimental data. The param-
eters of this model are then adjusted so their individual pro-
Ðles, when summed, correspond to the measured spectral
proÐle.

Formal theory

Formally, we obtain the best statistical approximation of the
experimental data using regression analysis. The experimental
value y that depends on the vector of parameters X in the
framework of regression analysis is expressed as

y(X)\ g(X)] e (1)

Since y is considered a random variable, g is an expectation of
y having parameters set to X and e is the random inÑuence.2

The properties of e are key in any Ðtting procedure. In a
least squares approach it is assumed that all the various
random inÑuences can be represented by a single inÑuence e
with normal distribution and zero expectation value.
Although this is generally the case, there are alternatives in
which other properties of e lead to substantially di†erent
Ðtting results.3 These will be explored elsewhere while here the
least squares approach only will be discussed.

It is hence assumed that e is non-correlated at each mea-
sured point.2 Thus, strictly speaking, the least squares method
is not applicable if the theoretical model is too primitive and
thus partly included in the random inÑuence second term of
eqn. (1). In practice, however, it is difficult to avoid any corre-
lation in e, and plots of the residuals, e \ y(X)[ g(X), often
indicate some trends, especially in the wings of spectral bands
in the case of spectra decomposition.

When solving the least squares problem, therefore, for
spectra decomposition, we minimise the function

Q(X)\ ; [Ie(l
i
)[ It(l

i
, X)]2, (2)

where Ie is the experimental spectral intensity at frequency l
iand It is the value of the model function calculated in point.l

iThe summation is performed through all experimental points.
It however can be expressed in a variety of ways and its
properties are essential only for Ðnding the minima of the
function Q. If, for example, Newton type methods of mini-
misation are used, Q (and consequently It) can be di†eren-
tiated with respect to X, necessary for calculating the
gradients of Q. The least squares method does not imply any
constraint on the function It, provided the statistical features
of e are retained. This allows us to construct such non-trivial
models as the calculation of It through the Fourier transform-
ation of the time correlation function or to Ðt several spectra
simultaneously.

The model spectral function is commonly represented as

It \ B] ;
i

I
i
b (3)

where B is the base line and Ib represents bands of previously
chosen shape. The base line is generally a polynomial function
of the order 1 to 3, weakly dependent on frequency, and often
contains the wings of neighbouring bands, and contributions
from, for example, luminescence in Raman bands.

In many practical cases eqn. (3) corresponds to a somewhat
idealised model. When the number of bands is large and many
overlap extensively it is best to use the inÐnite summation in
eqn. (3). This now produces a more complex model of essen-
tially one spectral outline, avoiding the use of a large number
of simple shape bands. However, because of the lack of proper
theoretical models (or for the sake of simplicity and in order
to solve the problem), a simpliÐed assumption of a Ðnite sum
in eqn. (3) can be used.4

The common form of the constituent bands Ib can be
written as

Ib(l) \ S0 f (l[ lmax , p, b) (4)

where f is real, even, normalised to the integral [or f (0)], and
can be a symmetrical or unsymmetrical function of the fre-
quency l. In this context is characteristic of the height ofS0the band in the summation in eqn. (3), and is the positionlmaxof its maximum, p the characteristic of the band width, and b
the set of parameters characterising the band shape. The Ðrst
three parameters are always present in any expression of band
shape, while the remainder are often omitted, and the shape of
the band is deÐned by a particular form of the expression as
in, for example, the following Lorentz and Gauss functions
(symbols as above) :

L (l, pL , lmax) \
1

n
pL/2

(l[ lmax)2 ] (pL/2)2
; (5)

G(l, pG , lmax) \
1

J2n pG
exp
C
[

1

2

Al[ lmax
pG

B2D
. (6)

From the Ðtting point of view, b is more difficult to obtain
because its inÑuence on It is the least of all other parameters
but even so b can be extracted from experimental spectra.

Non-trivial applications

Non-trivial applications of the formal theory to the spectral
resolution problem include the extraction of dynamic proper-
ties from the band shape. The time correlation function, C(t),
from common expressions of stochastic processes analysis,
when obtained as a Fourier transformation of the spectral
function given in eqn. (4), may be written as

C(t) \
1

2n
P
~=

=
f (l)e~ilt dl. (7)

Moreover, the band width parameter, p, represents in time
space the integral property of the correlation function, the
correlation (relaxation) time, q, viz.,

q\
P
0

=
C(t) dt. (8)

Thus for a Lorentz curve we have

CL(t) \
1

2n
exp
A
[ilmax t [

pL
2

o t o
B
. (9)

Upon normalising, and omitting the purely oscillating part
and considering positive time, we have

CL{ (t) \
CL(t)
CL(0)

\ exp
A
[

pL
2

t
B

; qL\
pL
2

. (10)

Any information concerning the detailed behaviour of the
correlation function is thus contained in the parameters of
spectral band shape b. If we consider the Voigt function, an
integral convolution of the Lorentz and Gauss functions, we
have

Ib(l) \ S0
P
~=

=
L (l[ k, pL , lmax)G(k, pG , lmax) dk (11)

and its Fourier transformation after similar evaluations has
the form

C(t) \ exp
A
[

pL
2

t [
pG2
2

t2
B

(12)

Thus all the information about the dynamic features of this
function is enclosed in the ratio of corresponding widths bV ,
viz., To extract dynamic information from the experi-pG/pL .
mental spectrum we have, therefore, to obtain information
concerning the line shape of the spectrum.
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Non-trivial models of the spectrum

Obtaining molecular dynamics directly

Molecular dynamics can be obtained directly from the Ðtting
procedure. Since physical theories of microscopic dynamics
operate in time space, their correlation functions often do not
have an analytical representation in frequency space (or these
expressions are particularly complicated). One such is the
Kubo function,5 which is widely used in the description of
vibrational relaxation and in Raman spectra of isotropic scat-
tering, and can be expressed as :

fvib(t)\ exp
G
[M2 q*2

C
exp
A
[

t
q*

B
[ 1 ]

t
q*

DH
, (13)

where is the second spectral moment of the band, andM2 q*is the relaxation time of the environment Ñuctuations.
The Fourier transformation of a Voigt function is relatively

simple, eqn. (12), even though the function itself, eqn. (11),
does not have an analytical representation that makes its cal-
culation any more time consuming than, say, the product of
Lorentz and Gauss functions. Conversely, the numerical
Fourier transformation of the experimental data always
su†ers from unavoidable sources of error. These include the
cut-o† of the spectra on the ends of the frequency range. This
leads to non-physical oscillations in time space. There are also
a Ðnite number of data points, and the inÑuence of the appar-
atus function on the ““ true ÏÏ spectrum.

New route to time characteristics and apparatus function

We now propose another approach for Ðtting spectra to
obtain time characteristics that avoids all the above
restrictions. This involves performing numerical Fourier trans-
formations on the model (theoretical) time correlation func-
tion and using model spectra obtained by this procedure in
each Ðtting step. The advantage is the generation of a model
spectrum to any desired accuracy and over any required fre-
quency range. The apparatus function of the spectrophotom-
eter is readily incorporated in this approach because the
measured spectra are the integral convolution of the ““ true ÏÏ
spectra and the apparatus function, that is, a simple product
of the appropriate correlation functions.

The calculation of the Fourier transformation in each step
of the Ðtting process is not time consuming, since a fast
Fourier transformation algorithm makes the calculation time
comparable with, say, the calculation of a Voigt function by
series.

Fitting several spectra simultaneously

Another substantial improvement to spectra decomposition is
““multi-spectra ÏÏ Ðtting. Here the calculation of the squares of
deviations can be performed by summation over several
spectra using

Q(X)\ ;
j/1

n ;
i/1

k
[I

j
e(l

i
)[ I

j
t(l

i
, X)]2, (14)

where n is the number of spectra undergoing decomposition
and k the number of data points in each spectrum. This is
useful when a series of spectra have to be Ðtted and we can
assume that the several common parameters all have the same
value in all spectra. For a series of spectra of a particular
system at di†erent temperatures we can assume that, for
example, only the heights of the bands are subject to change,
while all other parameters remain the same. This reduces the
number of Ðtting parameters and provides necessary links
between di†erent spectra. The approach is particularly advan-
tageous for isotropic and anisotropic Raman scattering
spectra. Such spectra are very similar in origin and di†erences
between them provide subtle details concerning the structure
and dynamics of the species under investigation.

ProÐles of minimising functions
ProÐles of SSD and meaning of corresponding parameters

The problem of Ðnding a reliable or correct set of parameters
during Ðtting is twofold. First, the minimum (or minima) of
the SSD needs to be found and, second, the behaviour of the
SSD around the minimum must be analysed since it gives an
estimation of the conÐdence interval of the parameters
obtained. Regarding the latter, there are no universal methods
for describing the multi-parameter function proÐles, especially
when they are non-linear and multi-modal. Moreover, the
existence of the multitude of local minima makes the standard
estimation of the conÐdence intervals of Ðtting parameters
unworkable because all such methods are for analysing local
minima. However, using test calculations, and general con-
siderations concerning the complexity of the theoretical model
under Ðtting, several typical cases can be distinguished.

Fig. 1 shows three model cases for the dependence of the
SSD with respect to one optimising parameter. Case (a) is pre-
ferred as the function has a single, well-pronounced minimum
which is lower than the experimental SSD (Qe). Unfortunately
this idealised situation is never reached in practice. Cases (b)
and (c) are more realistic, representing simple and complex
theoretical functions, respectively. If too simple a model is
deÐned, the SSD will have a single minimum, but well away
from the experimental SSD. SSD values of more complex
models approach the experimental result but tend to have
multiple local minima and a wider ““ spreadÏÏ (d).

The value of this spread will essentially deÐne the con-
Ðdence interval of the parameter. In practice, we Ðnd several
local minima and estimate the conÐdence interval as the inter-
val between minima with equal SSD. The local minima
problem may be complicated if the function has very shallow
minima, indicating weak dependence on the parameter, or if it
exhibits both several local minima and a weak dependence on
the parameters. The number of signiÐcant digits of the param-
eter depends upon its conÐdence interval in a non-simple
way.6 In this study we do not analyse conÐdence intervals of
the parameters in detail but here give as many digits of the
parameters as necessary. The number of digits in this case
does not reÑect the error in the parameter and is not con-
nected to the experimental uncertainties in its determination.
Hence we do not present conÐdence intervals in the tables but
give as many digits as needed to show the changes in the
parameter in di†erent calculations.

Existence of a unique minimum

In the numerical minimisation of the multi-parameter function
it is difficult to determine whether it is or is not uni-modal
(having a single minimum). The problem is more difficult if we
have more than around ten parameters or features that com-
plicate the Ðnding of local minima, e.g., a strong dependence
between several parameters. Here local minimisation methods
terminate at di†erent points and it is not possible to determine
whether they have reached a local minimum or the method
has failed. Although there is no unambiguous or correct recipe
for analysing the object function, based on a large number of
trial calculations, some predictions about its behaviour can be
made.

Fig. 1 Typical cases of the behaviour of SSD (Q) with respect to an
optimising parameter. Qe is the experimental SSD.
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Fig. 2 Dependence of sum of squares of deviations upon two adjustable parameters : band width ; ratio of Lorentz and Gaussp \ pL , b \bV ,
band components. Circles are values obtained from several Ðttings of the acetonitrile Raman spectrum using the Simplex method7,24 from
di†erent initial parameter values. These show that while the Simplex method does not give the desired solution, the proÐle of the minimising
function has a single minimum.

Fig. 3 Isotropic Raman scattering of acetonitrile at 25 ¡C and its decomposition into Voigt function bands to obtain vibrational relaxation
parameters. SigniÐcant overlapping of the bands around 2250 cm~1 hinders the determination of their shape.

Fig. 4 Isotropic scattering spectrum of dimethyl sulfoxide with its
resolution using Lorentz band shapes : an example of a highly over-
lapping set of bands for which obtaining a reliable or correct set of
parameters, despite the simple shape of each band, is complicated.

If strong correlations between several parameters are
present2 (for example, between the band width of Gaussian
and Lorentzian components) the possibility of multiple local
minima all having very similar minimising functions is high.
This situation can be easily recognised in spectra decomposi-
tion when, for example, some closely overlapping bands com-
pensate each other and these lead to small change in the
squares of deviation Q, within experimental error.

Despite the above caveats, if we have a situation similar to
that shown in Fig. 2, it can be conÐdently concluded that the
function has one unique minimum. In this diagram the
resulting SSDs from many Ðttings of the experimental spec-
trum are shown, starting from di†erent initial values of the
parameters. This surface has a global minimum since all these
points lie on the surface of the minimising function.

Sources of peculiarities

The results of comparing various ways of spectra Ðtting with
various models has shown that there are two main sources for
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the appearance of multiple minima in the function of the
squares of deviations Q. First, if a model theoretical spectrum
is not smooth, but has some non-physical step character, this
can lead to similar apparent noise in the minimising function
that is large enough to be considered as local minima by the
minimisation algorithm. This situation was found in the Ðtting
of the isotropic spectra of acetonitrile (Fig. 3) using Voigt
band shapes, eqn. (11), calculated by series. Second, even if our
model function is completely smooth, if the bands overlap
considerably this can produce several adjacent minima in the
object function. This arises from the contribution of a few
bands and this in turn can be compensated by contributions
from other bands. This type of compensation can be seen in
the Raman spectra of dimethyl sulfoxide (Fig. 4). The contri-
bution of the closely sited bands around 1050 cm~1 can be
represented, with less accuracy, by a single band. Therefore,
the heights of these two bands can be allowed to vary provid-
ed that their sum remains approximately constant.

Method of Ðtting
Local optimisation methods

The success of our new Ðtting method and the results
obtained depend on the features outlined earlier. However, the
most valuable component is the algorithm used for the mini-
misation of the sum of deviations. Since the theory of local
minimisation is now well developed,7 various methods of local
minimisation are a natural choice for the spectra decomposi-
tion problem.

There are two main categories of these algorithms, gradient
and non-gradient. Although algorithms of the Ðrst category
are generally faster they require the calculation of derivatives
of the minimising function with respect to its parameters. The
e†ectiveness of these algorithms depends largely upon the
accuracy of calculation of the derivatives. This is not a
problem if the derivatives can be calculated analytically.
Unfortunately this is frequently difficult to perform, or impos-
sible in principle. For example, the function in eqn. (13) does
not have analytical derivatives with respect to its parameters.

Among non-gradient methods the Ñexible Simplex method
is stable and e†ective for problems with a large number of
parameters,7 and hence was our choice for Ðtting calculations.
However we found that this method does not work for spectra
decomposition, and whether this is because it Ðnds only local
minima or cannot Ðnd any minima is not apparent (but see
later). The difficulties and problems arising with gradient and
non-gradient algorithms can be overcome if a method for
global minimisation is employed. This method guarantees
Ðnding the minimum, even if it is the only minimum of the
function.

The algorithm has also to work when a large number of
parameters is involved. Within the diversity of global search
algorithms8 the random search class of algorithms proved
suitable for functions of this type. Such algorithms are attrac-
tive as they allow substantial modiÐcations and they are Ñex-
ible and adaptable for a variety of problems.

Random search algorithm

The general description of the algorithm9 is as follows :
1. Generate N times random multidimensional points x10 ,

. . . , with distribution and assume s \ 0, i.e., anyx
N
0 P0(dx)

number of variables can be Ðtted.
2. From the points choose l points . . . , with thex

i
s x1*s , x

l*
s

least values of the object function.
3. Based on some rule (described later) deÐne numbers n

i(i\ 1, . . . , l) such that ;
i/1l n

i
\ N.

4. For all i\ 1, . . . , l generate times the distributionn
ichange dx), obtaining points . . . ,P

s
(x

i*
s , x1s`1, x

N
s`1.

5. Go to step 2 changing s to s ] 1.

In our version of this random search algorithm N was 20,
. . . , 100, and ranged from 1 to 10. Several rules in step 3n

iwere investigated, including the dependence of on the valuen
iof the object function in the point but as this did notx

i*
,

a†ect the efficiency of the algorithm, we chose the simplest
case, when all are equal.n

iThe key feature of this algorithm is the character of the
distribution change To provide a reasonable convergenceP

s
.

of the search the ““widths ÏÏ of the distributions must not
increase with the iteration process. We thus used normal dis-
tributions centred on and having dispersions d for andx

i*
s P

s
,

was found not to inÑuence the properties of the algorithm.P0 is centred on the initial values of the parameters, which canP0be chosen ambiguously, and its dispersion may have any rea-
sonable value (e.g., initially equal to 50% of the parameters) as
it is quickly altered to the optimal value during the next few
steps. More important is d for which deÐnes how ““close ÏÏP

s
,

the points on each successive step are generated to the points
in the previous step. The behaviour of d from step to step
deÐnes both the speed of the algorithm and its global charac-
ter. If it shrinks rapidly, the points cover too limited a range
of parameter values, and we risk not Ðnding the global
minimum. If d decreases slowly, the speed of convergence
slows, and the calculation is not completed in reasonable time.

To obtain d we tested two approaches for its calculation.
The Ðrst used the statistical characteristics of the distribution
of the behaviour of the object function on the currentx

i*
,

step. In the simplest case d is set equal to the dispersion of the
distribution of In the second approach, if d decreasedx

i*
.

when the current step did not produce the ““better ÏÏ point the
value of the function in all generated points was thus less than
the minimum value of the previous step. Conversely, if a
““better ÏÏ point was found, d increased. Interestingly, the results
produced by both these approaches were essentially the same
and hence we do not subsequently identify the method used.

Testing the algorithm

We tested our algorithm on the generalised Rastrigin function
(Fig. 5), speciÐcally :

f \ ;
i/1

n
b
i
x
i
2 [ ;

i/1

n
cos(18x

i
) (15)

The numbers of parameters employed were n up to 20, b
iequal to 0.001 for i \ 6 and 0.0001 for i \ 7 and unity for all

other i. In all cases the global minimum was found, and the
calculation time depended on the number of parameters and
set of coefficients used. Although this function is quiteb

icomplex for Ðnding the global minimum our algorithm pro-
duced the correct solution in all cases, despite a signiÐcant
number of parameters, the very di†erent scales of dependence
on di†erent parameters, and the large number of local minima
in the vicinity of the global minimum.

Fig. 5 View of function f\ x2] 4y2[ cos(18x)[ cos(18y) showing
the multitude of local minima. This function was used as a test for
evaluating the efficiency of our global optimisation algorithm.
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Implementation of the algorithm

A programming problem arises when using least squares for
spectra decomposition because the procedure requires the
examination of many descriptions of theoretical spectra. There
are no difficulties in coding for this if, for example, only the
number of bands is altered, but this is inconvenient when
using non-trivial shapes for di†erent bands in a spectrum. Our
approach for deÐning the theoretical model overcomes this.

We describe the theoretical spectrum, Ðxing its parameters
and all other necessary information for governing the opti-
misation process, in a language similar to natural mathemati-
cal language. The model is thus easily varied, including both
the number of bands and their shape, and we can also deÐne
the whole spectrum not just in terms of bands but through, for
example, Fourier transformation of the correlation function,
as described earlier. A typical example of the description of
model spectra is given in the supplementary data.” The
program for spectral data handling and spectra decomposi-
tion uses object oriented programming and runs under OS/2,
Win32 and UNIX and is coded in standard C]] and hence
can be easily transferred to other operational systems.

Results and discussion
The results presented here aim to show the uniqueness of the
parameters obtained from Ðtting various theoretical models to
various experimental spectra with di†erent levels of complex-
ity from the Ðtting point of view. It is important to stress that
the values of the parameters and, consequently, their physical
meaning depend crucially on the theoretical model chosen.
Analysing the numerical values of the parameters and com-
paring them with literature values allows us to determine the
quality and appropriateness of the theoretical model used for
Ðtting each particular spectrum. Naturally, drawing conclu-
sions from a comparison of the values of parameters without
careful analysis of the underlying theoretical model must be
avoided. We outline the meaning of the parameters presented
here, but a detailed discussion is not appropriate now. The
conclusions presented here, however, do provide the necessary
background for subsequent analysis of the physical meaning
of the parameters since we cannot interpret a value without
being sure of its uniqueness.

” Available as supplementary material (SUP57565, 4 pp.) deposited
with the British Library. Details are available from the Editorial
Office. For direct electronic acess see http ://www.rsc.org/suppdata/cp/
1999/3199.

Resolving several highly overlapping bands of simple shape

Our algorithm was Ðrst tested using a relatively simple
decomposition problem. Lorentz and Gauss band shapes were
used to resolve experimental spectra consisting of four to six
considerably overlapping bands. Three examples are now dis-
cussed.

Fullerene spectra. A typical, and topical, example is the
luminescence spectrum of a thin Ðlm of fullerene. We had
earlier10 examined the structures arising from varying the
method of preparation and the resulting thickness of these
Ðlms. This was in part evident from variations in their emis-
sion spectra in the visible region, of which Fig. 6 is a typical
example. Such spectra theoretically consist of Gaussian-
shaped bands and when attempting to Ðt the proÐle for the
apparent minimum number of bands, using a standard least
squares Ðtting program (PeakFit 4, Jandel ScientiÐc), the band
parameters were not independent of the initial estimates.
Using the universal procedure described here a unique Ðt was
obtained.

The results of the decomposition are given in Table 1 and it
can be seen that, although a range of di†erent initial estimates
was employed, the Ðnal parameters obtained were identical
within experimental error. It is important to stress that
although the choice of Gaussian bands was dictated by
theory,10 the theory is not conÐrmed by this resolution, but
the Ðt is unique to the observed proÐle.

Acetonitrile spectra. Fig. 3 shows the isotropic Raman scat-
tering of the vibration of acetonitrile. We have previouslyl2reported11,12 preliminary structural and dynamic character-
istics of liquid acetonitrile, from an initial resolution of this
spectrum. We now use the numerical approach to obtain
more detailed information on these characteristics and present
a more general form that can be used for essentially all types
of spectra.

The model consists of four Lorentzian bands and the
problem was simpliÐed by introducing a relationship between
the parameters, namely that the widths and heights of ““hot ÏÏ
bands were expressed through the width and height of the
fundamental transition band. The shift of the origins of these
bands was also deÐned by a single parameter. However, using
these simpliÐcations neither the Simplex nor the LevenburgÈ
Marquardt methods, implemented in PeakFit, gave a unique
solution : the derived parameters depended upon the initial
estimates. Our random search algorithm, however, was partic-
ularly successful and produced identical results after several
Ðtting runs starting from a range of initial values. Table 1 con-

Fig. 6 Luminescence spectrum of a thin Ðlm of fullerene and its resolution into Gaussian bands.C60
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Table 1 Decomposition of spectra consisting of closely overlapping bands of simplest shapea

(a) Luminescence spectrum of the fullerene C60 thin Ðlm, four Gaussian bands Ðt

Band 1 Band 2

S0 (arbitrary S0 (arbitrary
N units) lmax/cm~1 pG units) lmax/cm~1 pG D

1 1.55600 732.004 9.34283 0.201232 700.450 5.75883 0.309875
2 1.55600 732.004 9.34283 0.201231 700.450 5.75882 0.309875
3 1.55601 732.004 9.34283 0.201233 700.450 5.75887 0.309875
4 1.55601 732.004 9.34283 0.201232 700.450 5.75883 0.309875

(b) Isotropic Raman scattering of dimethyl sulfoxide, Ðve Lorentzian bands Ðt

1 21.6337 1042.8224 16.6736 6.6518 1028.4732 18.2274 7.8133] 10~2
2 21.6149 1042.8225 16.6652 6.6615 1028.4793 18.2398 7.8133] 10~2

(c) l2 vibrational spectrum of isotropic Raman scattering of acetonitrile, four Lorentzian bands Ðt

Band 1

N S0 (arbitrary units) lmax/cm~1 pL *hot D

1 5.503522 2253.431 3.718804 3.491379 5.7172] 10~5
2 5.503525 2253.431 3.718807 3.491377 5.7172] 10~5
3 5.503521 2253.431 3.718804 3.491377 5.7172] 10~5
4 5.503520 2253.431 3.718803 3.491380 5.7172] 10~5

a N is the computation number ; (arb. units), (cm~1) and (cm~1) are the height, maximum position and width, respectively ;S0 lmax pG,L *hot(cm~1) is the shift in positions of ““hot ÏÏ bands ; and D is the approximation dispersion. Several representative parameters are given to illustrate
typical cases in the uncertainties of their determination. These uncertainties originate from the Ðtting procedure and do not have any direct
connection with the experimental error of the measured spectra. The number of digits shown is more than normally required to represent the
experimental error, but here shows the excellent quality of the Ðtting parameter.

tains a selection from many of the results obtained for one of
the four resolved bands.

There are several reported attempts to Ðt the vibrational
spectra of liquid acetonitrile,13h16 all very di†erent in their
manner of treating the number of bands and their shape. Con-
sistency within the model is most important for comparing
results. For example, if the positions and widths of the ““hot ÏÏ
bands are considered as independent parameters this changes
the width of the fundamental band from 3.72 (in our model)l2to 4.12 cm~1. Both values are ““ true ÏÏ from the Ðtting point of
view, because they are unique in the framework of the corre-
sponding theoretical model. An analysis of the features of
these published models, taking into account where possible
results from other experiments and theoretical treatments, is
required for choosing the ““correct ÏÏ value from the physical
point of view. A review of such models and their analyses will
be published elsewhere.

Dimethyl sulfoxide spectra. A more complex model was
required for the decomposition of the Raman spectrum of
dimethyl sulfoxide (DMSO), Fig. 4, in terms of the increased
number of parameters used. Again we obtained a unique solu-
tion, Table 1. This spectrum was represented by Ðve bands
and these give, together with the base line, 17 adjustable
parameters. Interestingly, this proÐle contains three indepen-
dent highly overlapping bands of comparable height. This
situation could lead to signiÐcant uncertainties in results that
cannot be resolved by standard methods.

However, the existence of several local minima with
approximately equal SSD values in the vicinity of the global
one is highly probable. In this case the parameters obtained
from any of these minima may be considered true, the choice
depending upon external information, or the whole model
should be reformulated in order to exclude these minima.

The set of bands in this model corresponds to di†erent
types of DMSO associates and our results reveal more sta-
tistically justiÐed bands than in the other published data.17,18

Parameters of band shape

Three di†erent band models having adjustable shape param-
eters and the three basically di†erent Ðtting situations they
represent are now examined. In all cases standard algorithms
do not work, and the random search method was thus
employed.

Over-estimated model resulting in several local minima. The
spectrum of dimethyl sulfoxide in Fig. 4 contains bands that
are based on the product of Lorentz and Gauss curves :19

I(l) \
S0

1 ] 21~bS
Almax [ l

pS

B2 exp
C
[bS ln(2)

Almax [ l
pS

B2D
.

(16)

The advantage of this type of model is that the speed of
calculation is rapid. It is also expressed analytically, so that it
excludes any source of calculation errors leading to roughness
in the squares of deviation and, consequently, local minima of
this type, as deÐned earlier. Numerous calculations with
various modiÐcations of the algorithm have shown that it is
likely that there are several, but not many, minima that are
the consequence of considerable overlapping of the constitu-
ent bands. These solutions are reported in Table 2.

Naturally, the ““ true ÏÏ solution should be chosen and this is
the one minimum value of the approximation dispersion. This
example shows that when the theoretical model is over-
estimated, local minima appear even if band shapes are partic-
ularly simple. In this case conclusions based on subtle details
of the results of spectra decomposition must be treated with
care : any of these minima can be considered as true and the
corresponding parameters have wide conÐdence intervals that
cover all these minima.

Voigt band shapes. Tests showed that Lorentz and Gauss

Phys. Chem. Chem. Phys., 1999, 1, 3199È3208 3205



Table 2 Decomposition of spectrum of isotropic Raman scattering of dimethyl sulfoxide, using the product of Lorentz and Gauss functions
[eqn. (15)] used as band shapea

N S0 (arbitrary units) lmax/cm~1 pS/cm~1 bS D

1 0.420 1054.384 13.860 0.0795 5.7761] 10~2
2 0.415 1054.431 13.640 0.0835 5.7799] 10~2
3 0.392 1054.306 13.414 0.2780 5.7537] 10~2
4 0.396 1054.300 13.491 0.2557 5.7528] 10~2

a Symbols as in Table 1 ; (cm~1) is the width of one of the Ðve bands ; and is the band shape parameter (dimensionless). Several representa-pS bStive parameters again shown as in Table 1. Band positions are determined with the highest accuracy, followed by band height and width.

type band shapes are less appropriate than the Voigt function
band shape for Ðtting the acetonitrile spectrum, Fig. 3, espe-
cially away from the peak position. However, although the Ðt
is better with this function, the problem of obtaining unique
values of the band shape parameters now arises.

A model based on the Voigt band shape was used for the
decomposition of this spectrum. This model is rather difficult
to employ as a strong dependence between widths exists, eqn.
(11), but the consequent change in shape can be partly com-
pensated by a shift of the hot bands. A unique solution is
however obtained, Table 3, in the sense that both the approx-
imation dispersion and the parameter values are essentially
the same. This example clearly demonstrates that the shape of
the bands can be obtained during Ðtting, even when there is
considerable band overlap.

Kubo function. The most interesting model from the physi-
cal point of view has bands expressed through a time corre-
lation function,20 and allows us to obtain microdynamic
parameters directly from experimental spectra. The set of
bands investigated are again those in the isotropic Raman
scattering of acetonitrile, Fig. 3, but the bands are now deÐned
as a Fourier transformation of the Kubo function, eqn. (13).
The dependence between and appeared to be evenq* M2greater than in the case of the Voigt function. This slowed the
speed of the calculations, but a solution was obtained,
Table 3.

Comparison of band models. The slight di†erence in shape
parameters in the latter two cases is due to a small inÑuence
of these parameters on the sum of deviations.6 We obtained
excellent shape parameters even though the Ðtting was started
with very di†erent initial estimates, sometimes by several
orders of magnitude.

To our knowledge, this is the Ðrst attempt to obtain the
parameters of the dynamics of molecules from vibrational
spectra having highly overlapping bands. In a previous
publication15 somewhat unjustiÐed assumptions were made in
the treatment of neighbouring bands and of band shapes.

We now establish that the latter two models are a signiÐ-
cant improvement in the Ðtting of spectral proÐles. The
rationale is in the comparison of the approximation disper-
sions with the dispersion of the experimental errors. The latter
was evaluated by assuming a linear ““ true ÏÏ spectrum over a
narrow range of wavenumbers, from 2350 to 2330 cm~1, Fig.
3. The approximation dispersion could then be calculated and
the results were : experimental dispersion, 2.16 ] 10~7 ;
approximation dispersions for the Lorentz model,
5.72] 10~5 ; for the Voigt model, 2.06] 10~5 ; and for the
Kubo model, 3.84] 10~5. We hence conclude that all these
parameters have a good statistical basis, and that there are
still opportunities for further improvement of the model. For
example, if the accuracy of the experimental spectrum was
improved this would allow parameters of an even more
complex theoretical model to be obtained, such as parameters
of a more complex vibrational correlation function.

Acetonitrile solutions

Fig. 7 shows the resolution of a complex spectral proÐle, the
isotropic spectrum of solution in acetonitrile. For theLiBF4Ðrst time a band has been resolved that can be identiÐed with
acetonitrile molecules in the second solvation shell. The theo-
retical model here is particularly complex : it consists of 12
bands (positions indicated by arrows) that in turn give 22
adjustable parameters. Bands 1 and 7 are weak but are clearly
present. The latter corresponds to vibrations of second shell
acetonitrile molecules (see below). However, the values of all
parameters are unique and the presence of all the bands in the
resolution is necessary. Further, the band shape parameter of
the fundamental bands 8, 9, 10 and 11 can be obtained : their
physicochemical data can be summarised as characteristics of
vibrational relaxation of the solvent molecules in solution.
This result is particularly interesting because it allows com-
parison with the dynamics of the molecules in pure aceto-
nitrile (see above) and the results of theoretical and com-
puter modelling.21

Table 3 Decomposition of the vibrational spectrum of isotropic Raman scattering of acetonitrileal2
(a) Four Voigt function bands Ðt [eqn. (11)]

N S0 (arbitrary units) lmax/cm~1 pL/cm~1 bV D

1 35.087 2253.323 2.836 0.178851 2.0554] 10~5
2 34.880 2253.315 2.827 0.174938 2.0510] 10~5

(b) Four bands Ðt expressed through Fourier transformation of Kubo function [eqn. (13)]

N S0 (arbitrary units) lmax/cm~1 M2 (arbitrary units) q* (arbitrary units) D

1 0.49474 2253.336 498 3085] 10~3 3.842264] 10~5
2 0.49484 2253.342 521 2950] 10~3 3.842264] 10~5

a Symbols as in Table 1 ; is the width of the fundamental band ; is the ratio of Lorentzian and Gaussian parts of the band width ; andpL bV M2(arb. units) and (arb. units) are parameters of the Kubo function. Several representative parameters again given as in Tables 1 and 2. Bandq*positions are determined with higher accuracy than band height and width. The band shape parameters and, especially, and arebV M2 q*obtained with lowest accuracy but nevertheless still have satisfactory relative errors : 3È5% for and and D30% forbV q* M2 .
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Fig. 7 Isotropic Raman scattering of a solution of in acetonitrile at 25 ¡C and its decomposition into Voigt function bands using timeLiBF4space representation. Despite the extremely complex theoretical model used to Ðt this spectrum, the parameters of band 7 and the shape
characteristics of bands 8È11 are obtained uniquely.

Obtaining dynamics from experimental spectra. If the instan-
taneous frequency of the molecular vibration is assumed to
consist of the frequency of an isolated molecule that Ñuctu-u0ates under the inÑuence of the environment part theu*(t),dynamic feature, the speed of modulation can be characterised
by the quantity

JSu*(t)T q* , (17)

where is the mean value of the Ñuctuations ofSu*(t)T u*(t)and is its correlation time, provided that its correlationq*function is assumed to be exponential.22 The modulation of
the vibrations of acetonitrile molecules is known to be fast in
the bulk liquid. This is consistent with the Lorentz band shape
Ðtting the experimental spectra well and from the results of
Fourier transforms of the experimental spectra using some
rather rough assumptions.13,23 In both studies the exact value
of the speed of modulation was not given. Using our algo-
rithm we obtained for the Ðrst time the dimensionless speed of
modulation in liquid acetonitrile as 0.069. This result is based
on the analysis of complicated band shapes, described above,
and could not be achieved using traditional methods of
spectra decomposition.

Dynamic information can also be carried by parameters
other than band shape. The presence of the band itself can
serve as a dynamic characteristic. For example, the additional
bands identiÐed in electrolyte solutions of acetonitrile com-
pared with pure acetonitrile spectra indicate that the lifetime
of the solvent molecules in the Ðrst and second solvation shell
of the ion is greater than D10~12 s, a characteristic time for
vibrational spectroscopy. The bands 3È6 are identiÐed with
the Ðrst solvation shell and are well established,23 but using
our algorithm we found the parameters of the new band 7.
This band is here attributed to the response of the solvent
molecules in the second solvation shell because it is weaker
than those identiÐed with the Ðrst solvation shell (bands 3È6),
and because it is located between the bulk and primary solva-
tion shell bands.

Experimental
Films of the fullerene were prepared by vacuum deposi-C60tion on NaCl monocrystal. The crystal was then dissolved in
water and the 10 nm thick Ðlm was Ñoated on to a copper net.
The unit cell was measured as 1.420^ 0.001 nm. Lumines-
cence spectra were recorded at 5 K using excitation lines at
436 and at 546 nm. Acetonitrile was distilled four times, ini-
tially twice from and the third time fromP2O5 , K2CO3 .
Dimethyl sulfoxide was puriÐed by fractional crystallisation.
Raman spectra were measured using 0.5 cm~1 data point
intervals on a Ramanor U-1000 spectrometer (Jobin Yvon)
with resolution 0.15 cm~1 (ref. 24).
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