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The dynamics of peptides and proteins generated by classical molecular dynamics �MD� is
described by using a Markov model. The model is built by clustering the trajectory into
conformational states and estimating transition probabilities between the states. Assuming that it is
possible to influence the dynamics of the system by varying simulation parameters, we show how
to use the Markov model to determine the parameter values that preserve the folded state of the
protein and at the same time, reduce the folding time in the simulation. We investigate this by
applying the method to two systems. The first system is an imaginary peptide described by given
transition probabilities with a total folding time of 1�s. We find that only small changes in the
transition probabilities are needed to accelerate �or decelerate� the folding. This implies that folding
times for slowly folding peptides and proteins calculated using MD cannot be meaningfully
compared to experimental results. The second system is a four residue peptide
valine-proline-alanine-leucine in water. We control the dynamics of the transitions by varying the
temperature and the atom masses. The simulation results show that it is possible to find the
combinations of parameter values that accelerate the dynamics and at the same time preserve the
native state of the peptide. A method for accelerating larger systems without performing simulations
for the whole folding process is outlined. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3025888�

I. INTRODUCTION

There are many variations of molecular dynamics �MD�
which seek to accelerate the folding of peptides and proteins.
In the area of biomolecular simulations one of the most
widely used methods is replica-exchange MD.1–4 In this
method several MD simulations of the same system are run
concurrently at different temperatures. The selection of the
temperatures is a poorly understood process. At given times
the simulations can exchange temperatures. Low and high
temperatures in the simulations allow the system to explore
more of the phase space than is achievable �for a similar
computational effort� with standard MD. Another method for
speeding up the conformational changes is accelerated MD
or hyperdynamics.5–7 In this method an extra term is added
to the potential energy at the values below a given threshold.
Because this reduces the energy barriers between the states,
the system explores the phase space faster. A method de-
signed specifically for accelerating MD of peptide and pro-
tein systems uses the construction of a Markov model for
conformational transitions.8,9 The model allows the simula-
tion to be broken into pieces that can be run on independent
computers in a way similar to replica-exchange MD. How-
ever, unlike replica-exchange, the simulations are all run at
the same temperature. This technique has been pioneered, in

particular, in the Folding@Home project and taken to the
extent where hundred of thousands of computers can partici-
pate in a simulation.

All the methods mentioned above are used to accelerate
the dynamics of various molecular systems, in particular,
protein and peptide simulations. Normally the acceleration
comes at a price. In nature, proteins are generally only stable
in some temperature interval, above and below this they un-
fold. Therefore simply raising the temperature may speed up
the transitions between some conformational states, but it
may also make some states inaccessible, including the native
state. A similar problem can be expected when the model
parameters, the force field, are changed. In the case of
replica-exchange MD the problem is resolved by letting the
temperature change, but the interval in which to change the
temperature is not always clear. In the present paper we use
a Markov model to describe protein and peptide folding. In
our case the model is constructed from MD data in a way
similar to that employed by the Folding@Home group. How-
ever, our goal is very different. We aim to investigate how
the folding dynamics of a peptide should be changed in order
to reduce the folding time. In order to change the dynamics
we assume that the transition probabilities between the con-
formational states can be changed by varying parameters in
the MD simulation such as the temperature or the force field.
We impose two requirements on the changes of the Markov
model: �1� the folded conformational state must stay the
same and �2� the change must accelerate folding. This meth-
odology is applied to two systems. First, a hypothetical sys-
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tem described by given transition probabilities between the
states with a total folding time of 1 �s is investigated. We
show that by making very small changes in the probabilities
it is possible to reduce the folding time of the system by a
few orders of magnitude. Because these changes are small it
is possible to alter parameters in the MD simulations to ac-
commodate this. This also implies that the folding time of
slow folding peptides and proteins cannot be reliably com-
pared to folding times obtained experimentally. Second, we
apply the approach to MD simulations of a four reside pep-
tide valine-proline-alanine-leucine �VPAL�, Fig. 1. The goal
is to find how to vary parameters of the simulation in order
to change the Markov model so as to both preserve the
folded state and reduce the folding time. The parameters that
we have chosen to vary are the temperature and the masses
of the system atoms �equivalent to changing the force field�.

II. THEORY

In our investigation configurational states are defined by
clustering the simulated trajectory. This is done by analyzing
the Ramachandran plots of the residues of the peptide. Each
Ramachandran plot is clustered independently and the mol-
ecule’s configurations are found as a combination of the clus-
ter indices from all the plots. The Markov model is described
by a state vector v that holds probabilities of the configura-
tions and a transition matrix T. Examples of state vectors
could be �1, 0, 0, 0� or �0.5, 0.5, 0, 0�. Here the system has a
total of four possible states obtained from two clusters on
two Ramachandran plots. In the first case the system is with
100% probability in state 1. In the second case the system is
in state 1 with 50% probability and in state 2 with 50%
probability. Note that the total probability of the state vector
has to sum to 100% since the peptide has to be in some
configuration. The transition matrix simply holds the prob-
ability that the system is transferred from one state to another
at the next time step. T11=0.5 would mean that there is a
50% probability of the system remaining in the same state.
T21=0.25 means that there is a 25% probability of the system
changing from state 1 to 2. Because the total probability of
the state vector has to be conserved the requirement �iTij

=1 is imposed, where i and j run over all states. Given that
the system has state vector vt at time t, the state vector at
time t+�t can be calculated as vt+�t=Tvt. Whether the dy-
namics of the system can actually be described by a Markov
model can be determined by investigating how the eigenval-
ues of the transition matrix vary with time step �t.10,11

Assuming the dynamics of protein folding are described
completely by the Markov model with transition matrix T,
we can use the model to investigate how to accelerate the
dynamics most efficiently. Because T is a transition matrix it
has eigenvalues in the range of 0–1 with one eigenvalue
being 1. In the following it is assumed that the eigenvalues
are ordered in descending order so that �0 corresponds to the
eigenvalue 1. The time evolution of the system is then given
by

vt+n�t = Tnvt = �
i

�i
n��i���i�vt. �1�

At the limit n→� only the largest eigenvalue, equal to 1,
survives while all other eigenvalues, being less than 1, tend
to zero. Therefore, the eigenvector ��0� corresponds to the
equilibrium distribution of states. The speed at which the
system approaches the equilibrium distribution is described
by all the other eigenvalues that are less than 1. To speed up
the dynamics we must therefore reduce these eigenvalues, in
particular, the second largest eigenvalue since it describes the
slowest convergence in the system. As mentioned in Sec. I
there are many methods that seek to accelerate the dynamics.
However, the common problem is that apart from accelerat-
ing the convergence they also generally change the equilib-
rium distribution of states. Therefore, for a correct accelera-
tion we impose two requirements: �1� the equilibrium
distribution of states must be the same as for the original
system and �2� the method must reduce the folding time.
These two requirements can be written as

��0��T��0� = 0 �2�

and

��1��T���1�� � ��1�T��1� . �3�

The prime � �� marks the changed system and �T=T�−T. To
obtain a change in the transition matrix we vary parameters
of the molecular model � ,� ,� , . . .. In the case when we have
small changes in the transition matrix we can assume that

�T��,�,�, . . .� 	 �T��� + �T��� + �T��� + ¯ . �4�

This is a very useful approximation since it allows varying
each parameter, in turn, when we investigate how T changes
with the parameters. Using first order perturbation theory we
obtain �see Appendix�

����T��� 	 	� , �5�

where ��=�+	�. Therefore, assuming that the changes in
the transition matrix are small, the conditions given by Eqs.
�2� and �3� can be written as

��0��T�����0� + ��0��T�����0� + ��0��T�����0� + ¯ = 0

�6�

and

��1�T�����1� + ��1��T�����1� + ��1��T�����1� + ¯ � 0.

�7�

FIG. 1. �Color� VPAL.
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III. APPLICATION I

For a small peptide of realistic size the folding time can
be expected to be, for example, 1�s. If the transition matrix
is constructed with a time step of 100 ps, the number of steps
required for folding is n=1�s /100ps=10 000. Let us assume
that this time is equivalent to the time it takes to reduce the
part of the initial state spanned by ��1� to half of its value,
i.e., the halftime of the eigenstate ��1�, Eq. �1�: �1

n= 1
2 .Then,

we designate the folding time as a “folding half time” that
can be calculated as

n1/2 = −
ln 2

ln �1
. �8�

By rearranging the eigenvalue itself can be found

�1 = � 1
2�1/�n1/2�. �9�

Suppose that we have changed the dynamics and, as a
result, the eigenvalue �1 has changed by an amount 	�1. The
halftime for this new eigenvalue is

n1/2� = −
ln 2

ln��1 − 	�1�
. �10�

For the folding time of 10 000 steps the corresponding eigen-
value is �1=0.999 930 688, Eq. �9�. The speedup with differ-
ent values of 	�1 as found using Eq. �10� is shown in Fig. 2.
From Eq. �10� it is clear that the longer the folding time of
the peptide or protein, the larger the speedup for a given
change 	�1. Therefore, the speedup will be most significant
for proteins which fold slowly.

These considerations also have important consequences
for the accuracy of the folding time obtained in MD simula-
tions. It is clear from the above that proteins with long fold-
ing times are very sensitive to the changes in the transition
matrix and, in turn, the force field. Since any force field is
only approximately correct, this means that calculated fold-
ing times are significantly inaccurate, even though the folded
state reached in the simulation is correct. It is therefore not
meaningful to make a comparison between a simulated fold-
ing time and that determined experimentally, especially for
slowly folding proteins.

Finally it should be noted that the results rely on the
Markovian behavior of the system on the 100 ps time scale.
We have shown in our previous work that this is indeed the

case for a small peptide.11 Work is under way to elucidate the
time scale at which larger peptide and protein systems be-
have Markovian.

IV. APPLICATION II

A. Method

We have investigated how to accelerate a MD simulation
of a four residue peptide VPAL at the temperature of 300 K.
To do this we calculated the transition matrix from the simu-
lation trajectories. We then wished to find out how to change
the transition matrix to accelerate the dynamics. The change
in the transition matrix is accomplished by changing only
two parameters of the molecular model: the temperature and
the masses of the atoms.

We first investigate how the transition matrix changes
with the parameters varying in an interval around their origi-
nal values. For the simulations with different parameter val-
ues we construct transition matrices and hence find how the
transition matrix varies with the parameters.

All the simulations were performed using the software
package GROMACS 3.2.12 The peptide, Fig. 1, was solvated in
874 SPC water molecules. The force field 53a6 �Refs.
13–15� optimized for bimolecular systems interacting with
water was used. Periodic boundary conditions with a box of
size 3.0
3.0
3.0 Å3 were used. The temperature was kept
constant using the Berendsen thermostat.16 The atomic posi-
tions were recorded every 0.5 ps. The integration algorithm
was a Verlet type and the integration step was 0.002 ps. The
system was equilibrated before it was sampled for 200 ns.

To find the likely effect of varying the parameters we
assume that the transition state theory is valid �i.e., the tran-
sition rate is proportional to exp�−�E /kBT��. It is then clear
that an increase in temperature will lead to an increase in
transition rate and vice versa �this is essentially what is ex-
ploited in replica-exchange MD�. To find the effect of vary-
ing the masses we need to look at Newton’s second law. The
variation in the masses is described by the introduction of the
unified parameter � so that the new masses are �m,

��m�a = −
	V

	r
, �11�

or

(b)(a)

FIG. 2. �a� The folding halftime of the eigenvalue vs the change in eigenvalue. �b� The percentage speedup vs the change in the eigenvalue.
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ma = −
	�V/��

	r
. �12�

From this it can be seen that varying the masses by a factor
of � is equivalent to varying the potential energy by a factor
of 1 /�, which is changing the force field of the model.
Therefore from transition state theory, an increase in the
masses will increase the transition rate and vice versa, in
other words, the change in temperature with the factor �
should be equivalent to a change in the masses by the same
factor. However, the effect of varying the masses is expected
to be less. This is because we use a thermostat in the simu-
lations. To keep the temperature constant the velocities of the
atoms are adjusted to compensate for the changes in the
masses.

B. Results

In our investigation we have varied the temperature from
250 to 350 K in steps of 10 K while keeping the scaling
constant � at 1.0. We have also varied the scaling � from
0.75 to 1.25 in steps of 0.05 while keeping the temperature
constant at 300 K. We then calculated the transition matrices
for each of these simulations, as described in Sec. II. There
are a total of five conformational states �see Ref. 11 for de-
tails�. The transition matrix from the simulation at 300 K and
scaling at 1.0 is as follows:

T =

0.7729 0.5324 0.2807 0.1238 0.1041

0.1950 0.4472 0.1856 0.0221 0.1952

0.0004 0.0007 0.0054 0.0033 0.0061

0.0290 0.0041 0.4142 0.7220 0.2153

0.0028 0.0156 0.1172 0.1288 0.4793
� .

�13�

In Fig. 3 the eigenvalues are plotted for the variation in
scaling �a� and temperature �b�. It can be seen that an in-
crease in temperature increases the speed of conformational
transitions between the states. This is because the eigenval-
ues decrease as the temperature is raised. However, the effect
is barely visible in the case of the change in scaling. Overall
the changes are as predicted in Sec. IV A.

When considering reasonable boundaries for variations
in the temperature and scaling, the changes in the transition
matrix are small. The conditions that the changes must sat-
isfy to accelerate the folding and preserve the native state are
given by Eqs. �6� and �7�. To find which parameter sets sat-
isfy these conditions, we calculate the different elements in
the equations. In Fig. 4 the elements ��0��T��0� and
��1��T��1� are shown for the variation in temperature.
��0��T��0� is a measure of how the equilibrium distribution
of states is changed by a given change in temperature. Simi-
larly, ��1��T��1� is a measure of the acceleration achieved
�the change in the second largest eigenvalue� for a given
change in temperature. In Fig. 5 the same quantities are plot-
ted for the variation in scaling.

The parameter values that satisfy condition �6� can be
found simply by overlapping the ��0��T��0� graphs of Figs.
4 and 5. From these we then take the combinations which
also satisfy condition �7� by overlapping the ��1��T��1�
graphs of Figs. 4 and 5. The parameter set that gives the best
acceleration will also give the most negative value on the left
hand side in Eq. �7� and can, therefore, be easily identified.

The above procedure would be instructive in finding the
parameters that speed up the folding of the peptide system.
Unfortunately our simulations to date do not produce good-
enough statistics, longer trajectories are required and these
are currently being generated. However, by looking at the
range of values it is clear that there is a parameter set which
satisfies the conditions and thus leaves the folded state un-
changed but accelerates the overall dynamics.

V. OUTLOOK

The method requires the complete knowledge of the dy-
namics �converged transition matrix� for finding the optimal
acceleration parameters. This presents a problem for a larger
protein since the conformational space is computationally
impossible to sample exhaustively. A possible solution could
be to investigate how to accelerate parts of the protein, and

(b)(a)

FIG. 3. �Color online� The variation in eigenvalues with varying �a� scaling
and �b� temperature.

(b)(a)

FIG. 4. The variation in ��0��T��0� and ��1��T��1� with varying temperature. The former is a measure of the change in the equilibrium distribution of states
while the latter is a measure of the acceleration.
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then incorporate this into the simulation. This would work if
the conformations adopted by the separate parts are similar
to those of the whole protein. It is clear that the larger the
parts, the more similar the conformations are likely to be.
Whether this is possible is the subject of our current work.
However, with good control over the force field, the idea
looks promising.

VI. CONCLUSIONS

We introduced a method for accelerating the dynamics
of a peptide or protein in a way which does not change the
equilibrium distribution of states �the folded state�. The
method was applied to two systems. The first system was an
imaginary peptide with a folding time of 1�s. We found that
the folding time could be reduced significantly by making
very small changes in the transition matrix. In general it was
found that peptides and proteins that fold slowly are most
sensitive to acceleration. This result also implies that folding
times of peptides and proteins calculated using MD simula-
tions cannot be meaningfully compared to experimental re-
sults, especially for slowly folding molecules.

We also tested the acceleration method on a four residue
peptide VPAL. The parameters we varied in order to alter the
transition matrix T were the temperature and the atom
masses. From the simulations we have obtained the expected
behavior for the temperature variation. By varying the
masses, however, there was almost no change in T. This was
attributed to the effect of the thermostat. For both cases we
expect more pronounced effect for longer simulation times.
Nevertheless, the results demonstrate the possibility of find-
ing the combinations of the temperature and masses that ac-
celerate the dynamics and at the same time, preserve the
native state.
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APPENDIX: APPROXIMATION OF ��

In the following we find an approximation for �� using
first order perturbation theory. We have that

T��� = ���� . �A1�

For the changed dynamics of the system the new transition
matrix T� has corresponding eigenvalues and eigenvectors,

T����� = ������ . �A2�

Assuming that the changes are small we write this as the
original equation with small perturbations added,

�T + 	T����� + �	��� = �� + 	������ + �	��� . �A3�

Expanding on both sides gives

T��� + 	T��� + T�	�� + 	T�	��

= ���� + 	���� + ��	�� + 	��	�� . �A4�

The first two terms on either side are equal and therefore
cancel each other. The terms that are of the second order in
the change can be neglected because we have assumed small
changes. By rearranging the remaining terms we obtain

	T��� 	 	���� + ��	�� − T�	�� . �A5�

Now ���T���� can be approximated as

���T���� = ���T + 	T��� = ���T��� + ���	T��� , �A6�

	� + ���	���� + �����	�� − ���T�	�� , �A7�

=� + 	� + ����	�� − ����	�� , �A8�

=� + 	� = ��, �A9�

where Eq. �A7� follows from Eq. �A6� by substituting
Eq. �A5�. Therefore, for small changes

���T���� 	 ��. �A10�

This is a very useful result because it provides an easy way
of calculating new eigenvalues when the matrix is changed
from T to T�.
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