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The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition
between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the
complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before
and after the transition. This provides a new tool to identify metastable states during molecular self-organiza-
tion. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics
is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley
Periodicals, Inc. Complexity 10: 40 – 46, 2004
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INTRODUCTION

M olecular systems generally have complicated dy-

namics. Many-body and highly nonlinear interac-

tions make most of the dynamics chaotic, which is

especially true for large systems such as biomolecules. Sto-

chastic behavior of the molecular motions is assumed in

statistical mechanics; however, it is not random. It is chaotic

and is generated by deterministic laws of motion. The non-

random behavior is crucial when molecular self-organiza-

tion is considered, e.g., in protein folding.

A very high number of degrees of freedom and/or com-

plex interactions make the potential energy surface “rug-

ged,” that is, covered by many local minima with similar

energies. This leads to a situation in which significant

changes in the molecular configuration become “rare

events.” It can take a long time for a molecule to cross an

energy barrier and find the next local minimum. Often the

locations of some minima (intermediate conformations) are

known and the problem posed is how to find the path in

multidimensional space to reach one state from the other.

The latter problem attracts much attention because it

holds the key, e.g., to understanding chemical reaction

mechanisms. Finding the reaction path is a substantial chal-

lenge because often it cannot be probed directly by exper-
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iment. The “rareness” of the event and ultimately the com-
plexity of the dynamical system makes it difficult to
investigate theoretically or simulate numerically. Attempts
to rationalize the mechanisms of these “rare events” and
find the reaction paths has suggested that the dynamics of
the metastable states between the transitions is significantly
chaotic, whereas at the moment of the transition it becomes
semi-chaotic or quasi-regular, i.e., the system can maintain
approximate constants of motion and possess fully deter-
ministic dynamics [1]. An important question still remains:
how to identify the stable and metastable states in between
these transitions [2]. Where molecular fluctuations involve
only a few degrees of freedom this can be done empirically
or by using methods such as principal components analysis.
However, when many degrees of freedom are interacting
nonlinearly, recognizing the dynamic patterns of stable
states can be difficult.

This is because chaos itself contains patterns in time.
Processes having the same randomness can contain tempo-
ral structures of different degrees of complexity. Detecting
chaos can be problematic. The widely used Lyapunov ex-
ponent is a necessary but not sufficient characteristic to
identify chaos and has been reported to fail to detect chaos
[3]. A more detailed exploration of the inner structure of
chaos using, e.g., Komogorov’s algorithmic complexity sug-
gests alternative methods of detecting chaos [3].

The inner structure in a chaotic signal is reflected in the
way the system explores its phase space. More structure
means more repetitions of some kind in the trajectories of
the phase space. This implies that not all regions of the
space are uniformly covered. The evidence for this is indeed
found for protein dynamics, which has been shown to be
suppressed and cover less configuration space than normal
Brownian (completely stochastic) process on a short time
scale [4].

Numerous approaches to reduce dimensionality by ex-
tracting only the most important degrees of freedom have
encountered significant problems and suggest that it is dif-
ficult to identify the “reaction coordinate” in this simple
way [5]. Moreover, it is often necessary to introduce addi-
tional coordinates to capture the event studied. For exam-
ple, the simulation of the alanine dipeptide in explicit water
demonstrated the importance of the angle � and coordi-
nates of the water molecules in addition to the traditional
dihedrals � and � to identify the reaction coordinates for the
process of transition to a helical turn [6]. Similarly, in addi-
tion to the fraction of native contacts Q, usually used as a
reaction coordinate for protein folding, other coordinates
are necessary to obtain an optimal dividing surface [7]. This
and other investigations lead to the conclusion that gener-
ally, the processes in complex molecular systems can only
be adequately described as “collective” motion, not by the
dynamics of individual atoms or even groups of atoms. The
many-body character of the dynamics plays a decisive role,

especially in the condensed phase when solvent molecules
are included.

In summary, when investigating the transition processes
in molecular systems (i) the dynamics of many atoms must
be taken into account simultaneously; (ii) very high dimen-
sional trajectories of the system need to be analyzed; (iii) the
details (inner structure) of the chaotic system’s dynamics
should be studied; and (iv) the different characters of the
fluctuations should be considered: chaotic behavior be-
tween the transitions separated by quasi-regular or regular
dynamics at the moment of transition.

Taking these points into account suggests that the dy-
namics of a complex molecular system can be investigated
from a new perspective. The analysis of the dynamical tra-
jectory directly with an attempt to discover the patterns and
regularities in it rather than investigating the average quan-
tities as is done in statistical physics is a new approach.
These patterns constitute the essence of complexity [8] and,
to our view, provide the missing perspective on molecular
systems: the investigation of dynamical complexity and its
emergence in the system. This is especially important for
self-organizing systems because complexity is intuitively
connected to the emergence of new structures.

More specifically, we calculate the “statistical complex-
ity” of various molecular dynamic parameters such as
atomic trajectories, reciprocal orientations, and dihedral
angles. Statistical complexity is a characteristic developed
within the framework of “computational mechanics”
[9 –11]. We have shown that it can be used as a valuable tool
for uncovering new information about molecular processes
in the condensed phase [12,13].

Related to “computational mechanics” is “evolutionary
dynamics” [14]. This considers the time evolution of a pop-
ulation as a series of long-lasting “epochs” when the overall
fitness of the population remains approximately the same
and rapid “innovations,” when the system finds a way to a
new higher level of fitness [14]. Besides biological evolution,
this developing hypothesis describes a wide range of sys-
tems from ferromagnetic spin systems to genetic program
algorithms [15]. Here the interplay between the competing
forces of order and disorder leads to the emergence of
randomness and structure during the chaotic dynamics.
The hypothesis suggests that the system’s phase space is
partitioned into sub-basins (basins of attractions), where
the system spends most of the time (epochs, periods of
stasis), slowly exploring a sub-basin with almost unchang-
ing values of “fitness” (e.g., energy). At some rare moments
the system finds a “portal” to another sub-basin with a
higher fitness. The system quickly transfers most of its pop-
ulation to this new sub-basin and continues to explore until
the discovery of the next “portal” [14,16]. This view on
evolving dynamics contrasts with more common ap-
proaches when evolution is considered to be a more or less
steady ascent from one fitness mountain to another.

© 2004 Wiley Periodicals, Inc. C O M P L E X I T Y 41



We believe that the concept can be applied to molecular
systems in cases where the time transformations of the
system are “rare events” leading to some sort of self-orga-
nization. We see the evidence for this behavior in protein
folding in which the dynamics is shown to be an ensemble
of nearly degenerate substates and transitions between
them [17].

It must be emphasized that choosing the “fitness” func-
tion is a key point in the proposed research. As suggested by
Crutchfield et al. [14] the focus should be on how the system
stores and transforms information (rather than energy). The
idea is that the intrinsic computational property (dynamic
complexity) of the system is of primary importance. This
suits our situation particularly well because the complexity
is exactly the feature that discriminates one chaotic regime
from another. Thus, dynamical complexity not only serves
as a new valuable tool for tackling the extremely technically
complex problem of analysing multidimensional dynamic
signals but also plays an important conceptual role. It is
suggested that the complexity of a dynamic system emerges
(rises) when it discovers portals between the sub-basins in
its phase space. These innovations are accompanied by
changes in the architecture of information processing.
Therefore, the analysis of the dynamic complexity of mo-
lecular system can shed a light on the details of the sub-
basin– portal architecture in very high dimensional phase
space.

The purpose of this work is to study the chaotic motion of
a model molecular system within the framework of compu-
tational mechanics, thus investigating the hypothesis of “ep-
ochal” evolution punctuated by rapid innovations to new
stable states. We have chosen a model that is sufficiently
simple that method for analysis of complexity applied to
molecular dynamics simulation can be successfully devel-
oped.

METHOD AND NUMERICAL SIMULATION
In the following symbolic dynamics is considered, i.e., the
signal consists of discrete symbols assigned to discrete time
steps. Let a set of symbols corresponding to each time step
ti form a sequence S. To calculate the statistical complexity
[9 –11] S is decomposed into a set of left si

l (past) of length l
and right si

r (future) of length r halves joined together at time
points ti. Consider a particular left subsequence s1

l and all
left subsequences equivalent to it: s2

l and s3
l . Collect a set of

all right subsequences following this unique left subse-
quence (Figure 1). Each right subsequence has its probabil-
ity conditioned on the particular left one: Pr(sr�si

l). The
equivalence relation between any two left subsequences
can now be defined. Two unique left subsequences si

l and sj
l

are equivalent if their right distributions are the same up to
some tolerance value �: Pr(sr�si

l) � Pr(sr�sj
l) � �. A set of all

equivalent left subsequences forms an “equivalence class.”
The equivalence classes have their own probabilities (Ai)

calculated from the probabilities of the constituent left sub-
sequences. In all our calculations the tolerance of 0.001 was
used (see [18] for details).

The importance of the notion of equivalence classes is
that they represent the states of the system that define the
dynamics at future moments—the “causal states” (here
equal to “equivalence classes” with corresponding proba-
bilities). The time evolution of the system can be viewed
as traversing from one causal state to the other with a
probability defined by Pr(sr�si

l). The set of the causal states
together with the transition probabilities constitute a so
called “�-machine.” �-machines represent the minimal
computation necessary to reproduce the dynamics of the
system [18].

The statistical complexity is defined as the informational
size of the �-machine. The measure of this is the Shannon
entropy of the causal states:

C � � �
Ai

Pr�Ai�log2Pr�Ai�,

where Ai are causal states. In contrast to Kolmogorov com-
plexity this measure provides a zero complexity for both
extremes: a constant signal and a purely random process.
The maximum value of complexity lies somewhere in be-
tween these two limits.

The essence of statistical complexity is in the analysis of
the symbolic dynamics based on a physical process. This
means that the real signal is converted into a series of
discrete symbols from a finite alphabet using appropriate
partitioning of the phase space. The difficulties encountered
and the technical details of the symbolization procedure
used can be found in [12]. Omitting the details, the symbol-
ization was done by dividing the phase space into the grid of

FIGURE 1

A schematic representation of the equivalence relations. The left
(“past”) subsequences s1

l , s2
l , and s3

l (all symbols on the [tpast, ti]
interval) are the same. They lead to a distribution of right (“futures”)
subsequences s1

r , s2
r , and s3

r ([ti, tfuture]).
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a specified coarseness (partitioning) and assigning the sym-
bols by the cells where a data point falls.

The molecular model we investigate was chosen to be
simple yet complex enough to represent the basic features
of a multiatomic molecular system with nonequilibrium,
self-organizing behavior. We simulate the classical dynam-
ics of a zwitterion with charged oxygen and nitrogen atoms
in a vacuum (Figure 2). The Gromos-96 [21] force field and
LINCS [22] algorithm were used (the united atom model,
considering the CH2 groups as one particle, with all bond
lengths constraint). The GROMACS Molecular Dynamics
program [19,20] was used for all simulations. The system
was initially prepared in the extended configuration, and
then its energy was minimized and an MD equilibration run
took place for 2000 steps of 1 fs. After this the data were
collected from the MD simulation run for 8000 steps of 1 fs.
In the classical model adopted, there are no proton transfer
reactions allowed. In a real system in the gas phase, a
proton transfer may be observed from the protonated
amine to the carboxylic acid.

This model Hamiltonian system possesses 19 degrees of
freedom with highly nonlinear interactions that with high

probability implies that its dynamics is chaotic. Indeed, for
molecular systems it has been shown that molecular sys-
tems exhibit chaotic behavior (have positive Lyapunov ex-
ponents) both for large bio-molecules [23,24] and simple
three-atomic molecular model [25]. In addition, as it will be
shown later, this system, despite of its simplicity, also has
distinct “basins of attraction” and features of the “rare
events” dynamics.

For the analysis we collected the system’s dynamical
parameters in three ways: (1) three-dimensional (3D) tra-
jectories of each of the 12 atoms of the molecule (Figure 2;
called “global” further in the text); (2) using the same 3D
trajectories but in a “local” coordinate systems attached to
each end of the molecule (Figure 2; called “1-2-3” and
“8-9-10”); and (3) six (1D) dihedral angles (Figure 2).

RESULTS AND DISCUSSION
Visualization of the zwitterion motion shows initial fluctu-
ations in an “extended” conformation. The molecular chain
is more or less stretched along a straight line. This is fol-
lowed by rapid collapse into a “folded” state, when the
charged ends are next to each other and the molecule forms
a ring-like structure (Figure 2). By plotting the system’s
energies, the evidence of a clear structural transformation
can be seen in Figure 2.

It should be stressed that we did not use any tempera-
ture-controlling mechanisms in order to keep the total en-
ergy constant. This leads to a substantial increase of kinetic
energy after the folding that compensates the potential en-
ergy drop. However, the important point is that the system
remains on the same energy level and irreversible character
of the system’s dynamics presents a good example of a
relatively simple dynamic system with nonergodic behavior.

In our model the moment of transition is clearly defined
by both the geometry transformation and energy changes,
and we can proceed with testing our hypothesis and check
if the complexity will indicate the same moment of transi-
tion. We assign the time from 2.7 to 3.0 ps as a period of
transition and the stages before and after this period as the
times when the system is in different “phase space basins.”

In the case of a continuous trajectory, i.e., when the size
of the alphabet goes to infinity, existence of probabilities
Pr(sr�si

l) assumes that at a particular time ti the system can
follow different trajectories starting from a single point in
the phase space. That is obviously not the case for the
Hamiltonian deterministic systems where the trajectory is
uniquely defined by the initial conditions. Therefore, the
causal states will degenerate into single pairs of past and
futures and the probabilities of the causal states will reflect
the probabilities of the system to be found in each phase
space point over a period of time under consideration.
However, this is not the case when we consider a subspace,
rather than a whole phase space. Moreover, from the chem-
ical point of view, considering different subsystems of the

FIGURE 2

(a) Schematic view of the zwitterion. Carbon atoms are dark grey;
hydrogen, light grey; oxygen, white; nitrogen, black. The numbers
label the atoms of the model, the Roman numerals are the dihedral
angles. (b) Energy is in kJ/mol of the system simulated. Vertical
dashed lines show the beginning (2.7 ps) and end (3.0 ps) of the
transition.
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whole system can be even more informative because often
in molecular systems only relatively small fraction of atoms
exhibits a desired behavior. For example, for a protein in
water only the protein molecule shows folding, whereas the
majority of the degrees of freedom, although being neces-
sary for the folding to occur, —the water molecules—wan-
der in the phase space without forming persistent struc-
tures.

The above is true only for the limit of infinitely fine
partitioning, i.e., for continuous signals. For a finite size of
partitioning grid, however, each particular cell in the phase
space may lead to different trajectories because of the range
of possible initial conditions within the cell. Therefore, the
partitioning of the phase space to symbolize the continuous
signal should be optimal in a sense that there should not be
too many partitions leading to a situation described above
and, at the same time, should be enough partitions to ex-
tract the relevant information from the continuous signal.
We found empirically that a reasonable alphabet was 50
partitions in each of the three dimensions for “global” tra-
jectories and 25 partitions for “local” trajectories and dihe-
drals.

The 3D trajectories of the atoms (not reproduced here)
show two regions of chaotic behavior with seemingly ran-
dom character. “1-2-3” and “8-9-10” local trajectories reflect
the dynamics of the atoms excluding the translations and
rotations of the molecule as a whole. The difference be-
tween the two is in their ability to provide dynamic data for
different ends of the molecule: the closer an atom to the
origin, the smaller the absolute value of the coordinate, and,
consequently, less information is transferred into the sym-
bolic sequence. The dihedrals show typical “rare events” in
their temporal behavior (not shown here)—they tend to
fluctuate around particular values with occasional jumps
from state to state. To calculate the complexities we used
subsequences of 1 ps in length and calculated the statistical
complexity on those intervals using the procedure de-
scribed above. The resulting complexity value was plotted
as a point in the middle of the interval, i.e., at 0.5 ps. The
procedure was repeated to cover the whole simulation time.
The length of the interval (1 ps) used to calculate each
complexity value is the reason of the appearance of a delay
in complexity change after the transition took place.

The complexity of the “global” trajectories together with
the complexity–Shannon entropy difference are shown in
Figure 3 (Shannon entropy was calculated using the prob-
abilities of the symbols obtained from the same symboliza-
tion procedure as for the complexity calculation). The first
and foremost result is that the complexity demonstrates a
distinctive increase after the transition point. Most interest-
ingly, all 12 atoms exhibit similar changes in complexity.
This suggests that the dynamics in all 19 dimensions for the
system (we do not include velocities at the moment) is
important. Amazingly, individual 3D components are sen-

sitive to the whole 19-dimensional process. This suggests
that complexity can be a powerful tool in identifying the
states of a very high dimensional system by using trajecto-
ries in a very small dimensional subspace.

It can be seen from Figure 3, that statistical complexity
provides information that is different from Shannon en-
tropy, demonstrating that in addition to the change in the
randomness of the motion, the information of temporal
history plays an important role. Statistical complexity car-
ries information about the emergent patterns of the process,
so, e.g., a completely random sequence has zero complexity
(having the maximum Shannon entropy).

The hydrogen atoms 10, 11, and 12 show slightly higher
complexity. This could be because they perform faster ro-
tations around the CN bond which, apparently, introduces
more dynamic features to their trajectories.

After the collapse, the complexities seem to be closer to
each other compared to the regimes before the transition.
This implies that in the “folded” state the dynamics of the
system is more concerted and all atoms are involved in the
same highly interdependent motion.

The latter effect is even more pronounced for the “local”
trajectories (Figure 4). The same qualitative behavior is
present (the absolute value of complexity strongly depends
on the number of partitions used) as is seen in the “global”
trajectories. The “1-2-3” trajectories reproduce a distinctive
peak just before 3 ps, also present at some of the “global”

FIGURE 3

Statistical complexity of the atoms (“global” trajectories; see text) of
the model system investigated. The numbers on the left and right with
corresponding short horizontal lines depict the mean values of com-
plexity for each atom (see Figure 2a) before and after the transition.
The upper group of curves (above 2) are statistical complexities; the
lower group are the differencies between the complexities and
Shannon entropies. The dashed lines indicate the transition interval
(see Figure 2b). The horizontal error bars show the intervals used for
calculating each point of complexity.
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atoms’ complexities. The less pronounced changes in the
values of complexity of the “8-9-10” trajectories is a result of
the NH3 group rotations that appear to possess somewhat
different dynamics when compared to the rest of the mol-
ecule.

Finally, the biggest change in complexity is found for the
dihedral angles (Figure 4). For the reasons discussed in the
previous paragraph, we omitted the dihedral angle number
VI, which corresponds to the rotations of the NH3 group.
Obviously, for this sort of molecular model, the dihedrals
reflect most of the features of molecular configuration,
which is clearly reflected in their behavior. This is beneficial
since the dihedral angles are one-dimensional, which allows
the accumulation of more information from the continuous
trajectories during the symbolization. Again it should be
stressed that all the dihedrals show qualitatively the same
behavior at the moment of transition. This supports the
previous conclusion that the dynamics and hence the com-
plexity is highly concerted involving all atoms with a strong
interdependence.

It should be mentioned that the system undergoes a
substantial increase in temperature defined in the usual

statistical mechanical way. Therefore, the observed changes
in complexity can be at least partially attributed to the
temperature rise. To test in what extent the temperature
affects the complexity additional investigation is required
that will involve the simulation with temperature coupling.
However, this will change the system completely lifting the
Hamiltonian systems restrictions and introducing the dissi-
pative forces in it. This, in turn, fundamentally changes the
dynamic picture and the analysis will require significantly
different approach. We will explore this line of research in
our subsequent publications.

CONCLUSIONS
The main result of the present study is in presenting evi-
dence that substantiates the sub-basins—portal architec-
ture of a molecular system’s dynamics, at least for the
model used. The increase in dynamical complexity when
the system undergoes a transformation leading to a more
complex structure is demonstrated. The highly concerted
collective motion of the system is revealed and, the 3D
subspaces, or even 1D cuts if an appropriate coordinate
transformation is applied are sensitive to the processes tak-
ing place in the very high-dimensional phase space. The
statistical complexity provides a valuable new tool for dis-
criminating between the regions of the dynamical system
when they are at different metastable states during the
transition over time.

The results presented give us a promising new direction
for the analysis of more complex molecular systems, e.g.,
biomolecules in water. We anticipate the situation where
the complexity of atoms in different locations of a large
molecular system during folding have similar complex be-
havior. This would provide a fundamentally new way of
understanding the transition processes in the system. When
a system has reached its most structured state, (e.g., when a
protein has folded), we hypothize that the dynamical be-
havior of many of its atoms involved in secondary and
tertiary structural features would have similar complexity
behavior.
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