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The development of a sophisticated model is presented for Ðtting the experimental Raman spectra of liquid
acetonitrile. A new approach for extracting all possible band shape details of highly overlapping spectral bands
is derived and implemented. A unique, statistically justiÐed resolution is obtained of the vibrational bandm2
into its components at 25, 50 and 75 ¡C. The parameters of both the real and imaginary parts of the vibrational
correlation functions are reported for the Ðrst time together with their conÐdence intervals. The quantitative
characteristics obtained of the mode dynamics can be considered as experimental data and used for testingm2
theoretical models of vibrational relaxation.

Introduction
The vibrational spectra of liquids contain information con-
cerning the dynamics of the molecules of that liquid. Extract-
ing that information is difficult because many processes,
including rotational and vibrational relaxation, are taking
place simultaneously therein and thus contribute to the
observed spectra. However, it is possible to derive the
dynamic data of molecules in the liquid state if the quality and
accuracy of experimental data is of the best and a unique
resolution of the spectra into its component bands can be per-
formed. We recently demonstrated1 that this could be
achieved, using a range of varied examples, and used the term
“unique resolutionÏ to mean that spectra can be resolved
unambiguously within a chosen theoretical model. We retain
that usage here and assume familiarity with that publication.1

Our approach requires that we choose (or construct) an
appropriate theoretical model for the shapes of the constituent
bands (often referred to as line shapes) that is based upon two
factors. The Ðrst comprises the existing theoretical consider-
ations concerning the dynamics of the molecules when in the
liquid state, and the second relates to the ability to use the
theoretical model to obtain a unique resolution of the spectra.

We therefore here describe the methodology of the con-
struction of the model that allows us to extract all the line
shape information from highly overlapping bands while
retaining the framework of a carefully analysed theoretical
model. SpeciÐcally, the Raman spectrum of liquid acetonitrile
is analysed. The emerging vibrational correlation functions of
the mode at di†erent temperatures are obtained andm2detailed information about their shape, together with the con-
Ðdence intervals of their parameters, is presented.

Statistically justiÐed resolution of experimental
spectra into band shapes
The computer program that provides a unique resolution has
been published.1 The requirements of the associated model are
that it should be adequate and able to reproduce all the fea-
tures of the spectrum, and also not too complex, but simple
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enough to ensure that a unique resolution of the spectrum is
obtained.

The resolution procedure employs a least-squares Ðtting in
which regression analysis formalism is used. Hence it is
assumed that an experimental spectrum can be represented by
y(X) \ g(X) ] e. The experimental y values here depend on a
set of unknown parameters X, and are considered as a
random variable that is the sum of its expectation value g and
purely random deviation e. A further assumption is the equiv-
alence between g(X) and some predeÐned theoretical model
ytheor(X) :

g \ ytheor. (1)

A least-squares procedure is then applied to obtain the values
of the parameters X.

This process is often not taken further in the derivation of X
parameters. However, such incomplete regression analysis
processes may easily lead to erroneous conclusions. To avoid
this possibility the following two procedures are performed.

(a) The chosen theoretical model is checked for correctness,
in that assumption (1) is fulÐlled. This can be achieved by ana-
lysing the properties of the calculated e values. Rigorously, the
values at each experimental point (each wave-e
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inumber), where are experimental dispersions, are all nor-p
imally distributed random variables with mean zero and equal

standard deviations. The sum of squares of these values over
the experimental points is s2, the distributed random variable.
The numerical values of s2 for truly normally distributed
random are tabulated or can easily be calculated for each ofe
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the number of degrees of freedom (the di†erence between the
number of experimental points and the number of Ðtting
parameters). It is then possible to compare the tabulated s2
values with that calculated from a particular Ðt under investi-
gation. If these values are too di†erent (and there is a sta-
tistically justiÐed way of expressing the extent of their
equivalence) that means that values are not normally dis-e
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tributed with a zero mean and the same standard deviation.
Hence, assumption (1) is not fulÐlled, the theoretical model is
incorrect and the whole Ðt has no meaning.

However, there is a subtle point in the outlined procedure.
The Ðnal s2 is rather sensitive to the experimental dispersions

Thus, unless accurate are known, the results of such anp
i
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ianalysis cannot be considered reliable. Nevertheless, valuese
i
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can be analysed directly. While the standard deviations of the
distributions are not equal, the mean still should be zero.e

iHence, if the di†erences y [ ytheor show a regular trend this
indicates that the model ytheor is insufficiently complex because
e is not purely random. The problem of deÐning a proper
model ytheor is considered below and its application to a real
spectrum is discussed later.

(b) A unique least-squares solution must be obtained. While
normally unique in the case of a linear model in the non-linear
case this can be a particularly difficult problem, especially
when a complex model is used, as is often the case for the
resolution of spectra. This question has been earlier analysed
in detail.1

Only if these two conditions are fulÐlled are the values of
the parameters X meaningful, and their conÐdence intervals
can then be reliably calculated. From among the various
methods for calculating conÐdence intervals the Monte Carlo
method is one of the most general and reliable2 and used here.

Goodness-of-Ðt

When deÐning the model there are two situations to avoid.
These are schematically illustrated in Fig. 1 for the case of the
simpliÐed one-parameter Ðt. Too simple an approach can
result in an underestimated model, as represented in Fig. 1a,
and too elaborate an approach will yield an overestimated
model, typiÐed in Fig. 1c. An acceptable situation corresponds
to Fig. 1b. The quantitative measure for the goodness-of-Ðt is
given by the probability Q that the chi-square should exceed a
particular value s2 by chance2 (see above). For the underesti-
mated model this probability is considerably less then unity :
in the overestimated case its value is very close to unity. If the
model is optimal, the Q value lies between D1 ] 10~2 and
D0.9.2

When the minimum of the sum of squares of deviations
(SSD) is calculated then one of the possible proÐles shown in

Fig. 1d, e, f is obtained. Here D roughly corresponds to the
experimental dispersion that is the value to which the calcu-
lated dispersion of approximation, SSD/(the number of
degrees of freedom), should correspond. In reality, each
experimental point has its own D value that is impossible to
plot, and strictly the behaviour of Q should be analysed. It is
thus important that the goodness-of-Ðt should be as close to
the ideal situation (Fig. 1b, e) as possible, because otherwise
subsequent manipulations will not produce meaningful results.

In reality the situation is often even worse. The model may
be quite elaborate and hence the plot of the sum of squares of
deviations against the parameter value shows a proÐle like
that of the overestimated model, but unfortunately all its
minima are still greater than the experimental dispersion (Fig.
1g), as in the underestimated model. We here have the features
of both unacceptable cases.

To obtain statistically justiÐed parameters this type of situ-
ation should be avoided. From the statistical point of view,
the overestimated model (Fig. 1c, f ) is also acceptable, but it is
generally not acceptable in the sense of Ðtting a unique solu-
tion (condition (b) above).

ConÐdence intervals

In the calculation of conÐdence intervals for the parameters of
a somewhat sophisticated non-linear model the process is not
straightforward. The proÐle obtained, as in Fig. 1g, at no
point crosses the D value or, equivalently, the Q value is con-
siderably less then unity. This situation does not produce con-
Ðdence intervals, and thus here all the values of the Ðtting
parameter obtained are invalid.

Even when the acceptable situation is achieved (Fig. 1b, e),
the calculation of the conÐdence intervals for the parameters
should be carried out with care. Attempts to obtain them in
the global minimum using standard gradient methods are not
useful, because they produce the conÐdence intervals of local

Fig. 1 Various theoretical models (a, b and c) and the corresponding schematic behaviour of the minimising function (dispersion of
approximationÈsee text) (d, e, f and g) for the one-dimensional model case. D denotes generalised ““experimental dispersionÏÏ.
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Fig. 2 ConÐdence intervals of a generalised parameter. (a), Rigorous
deÐnition ; (b), commonly used approximation. D denotes generalised
““experimental dispersionÏÏ.

minima. Also, the minimising function is assumed to be
approximated by the quadratic form and this cannot be
applied in the general case for complex non-linear models.

Ideally, the ranges of the acceptable values of the parameter
are those where the approximation dispersion is less then the
experimental dispersion (strictly, Q is in the acceptable range).
The one-dimensional case is illustrated in Fig. 2a. In higher
dimensional space this region can be of a more complicated
shape. For simplicity, however, these ranges can be approx-
imated and reduced to a single section (Fig. 2b) : in the higher
dimensional space of the optimising parameters the approx-
imation would be an ellipsoid. Again, the general algorithm
for Ðnding these conÐdence intervals uses the Monte Carlo
simulation that employs the generation of the “Ðctitious Ï
experimental data set and Ðts these data to accumulate sta-
tistics on the Ðtting parameters.2

Specialised approach for extracting line shapes from highly
overlapping spectral bands

Current theoretical models of liquids employ complex line
shapes3h5 that are almost always non-linear. Even though the
resulting line shape may be very complex, involving up to 10
parameters, we have found (see later) that it proved difficult
and sometimes impossible to obtain the acceptable situation
represented in Fig. 1b, e. We have therefore devised a new
approach that overcomes this problem by using a com-
bination of a non-linear and a linear Ðt. This process allows

line shapes to be obtained from the overlapping bands. These
shapes are extracted from the experimental spectra and based
on general theoretical considerations. Certain assumptions are
contained in the process but they are of a general nature and
thus the method should be applicable to a wide range of
experimental spectra. The algorithm is as follows :

(1) Fit the spectrum with bands of the non-linear shape dic-
tated by one of the theories. The band shapes should be elabo-
rate enough to reproduce the main features of the spectrum.

(2) Calculate the di†erences between the experimental and
calculated spectral proÐles (residuals).

(3) To each spectral band add a small linear “correctionÏ,
viz., a function Ñexible enough to compensate the Ðtting
residuals but which has some general restrictions that keep
these corrections small.

(4) Fit these linear corrections to the di†erences calculated
at step 2.

The “corrections Ï may be a linear combination of non-linear
functions, for example,

c(l) \ ;
i

N
A

i
(l[ lmax)2 exp

C
[
Al[ lmax

w
i

B2D
(2)

where l is a wavenumber and is a position of the bandlmaxmaximum. Having constant and adjustable, the wholew
i

A
ifunction is linear with respect to its parameters. Also, this

function can change the line shape considerably, provided that
a sufficient number of items are retained (N up to 40). The
convenience of this type of correction is that it is symmetric
and has zero asymptotes at the origin and the inÐnities. Such
a sum can be assigned to each band and centred at each band
centre. The combination of these features of this function
keeps it small compared to the non-linear part of the band
shape, while at the same time adding the necessary correction
to the band shape. The resulting algorithm is implemented in
the program we described previously.1

Since the corrections are linear the uniqueness of the
resolution is preserved as required by condition (b) above.
Also, the use of a general method for calculating the con-
Ðdence intervals (such as the Monte Carlo method) guarantees
their reliability for the correction parameters.

Fig. 3 Set of bands used for resolution of the isotropic Raman spectrum in the range of vibrations of liquid acetonitrile at 25 ¡C. Them2experimental points (open circles) are shifted upwards by 0.01 units for clarity.
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Fig. 4 Development of the shape of bands used for the resolution of the isotropic Raman spectrum in the range of the vibrations of liquidm2acetonitrile at 25 ¡C. Circles are experimental points ; solid lines, the mean of the residuals while the dotted line is its dispersion (see text), both
lines multiplied by 5. (a), Lorentz band shape ; (b), shape based on Kubo correlation function ; (c), the Voigt function band shape ; (d), Voigt
function with symmetrical linear correction ; (e), same but asymmetrical correction ; (f ), ““double sine ÏÏ band shape ; and (g), ““double sine ÏÏ plus
auxiliary bands. is the dispersion of approximation.De

Results
While liquid acetonitrile (AN) has been investigated in many
studies, from spectroscopy to computer modelling,6h11 the
unambiguous interpretation of its vibrational spectra is still
challenging. This is because it does not have isolated spectral
lines and all lines of interest overlap considerably. However,
this chemically important representative liquid is advanta-
geous for study, having a simple and highly symmetrical mol-
ecule that bears a signiÐcant dipole moment.

The vibration, one of the most active in the Raman spec-m2trum, involves the most chemically important C3N group of
the molecule. This is the site of the molecule that is subject to
inÑuence by various chemical and physical processes and, con-
sequently, shows the most interesting spectral proÐle.

Assigning a set of spectral bands

There exists an extensive literature on the assignment of spec-
tral bands in the range of the AN spectrum (for representa-m2tive examples see ref. 6, 9, 10, 12 and 13). The authors use
various assumptions concerning the details of the spectral
band shapes but the common feature is that the spectrum con-
sists of two fundamental vibrations, and and onem2 m3] m4 ,
or more ““hot ÏÏ bands (the alternative hypothesism2] m8 [ m8 ,
of associated AN molecules has been shown to be
inconsistent14). It is crucial to have a consistent model for
comparing results from di†erent investigations because subtle
variations in the band shapes can change dramatically the
overall band proÐle. For example, depending on the ratios of
the heights of ““hot ÏÏ bands and the fundamental vibration,l2the widths of these bands may vary considerably. Unfor-
tunately, there is not enough information in the Raman spec-
trum itself to deÐne the number of bands and their
relationships unambiguously. Our choice was dictated by
having a complex enough model to reproduce all the features
in this spectral region while, at the same time, also being
simple enough to provide a unique resolution. Our Ðnal set of
bands is presented in Fig. 3 and consists of the following :
(1) Fundamental vibration band 4. Four ““hot ÏÏ bandsm2 :

(n \ 1É É É4) : bands 5È8. Their heights were setm2] nm8 [ nm8and Ðxed according to the Boltzman factor S
n
\ Sf (n

where and are the heights of] 1(exp[[1.439(nl8/T )], S
n

Sfthe nth ““hot ÏÏ band and the fundamental band, respectively, m8is the wavenumber of the vibration, and T is temperature.m8We attempted to Ðt the temperature parameter, and the
results were close to the actual temperature of the liquid. A
more rigorous approach would require calculating the local
temperature in the molecule micro-environment from the ratio
of the Stokes and anti-Stokes bands,15 but this is the subject
of a separate study. The bands were considered equi-distant,
and their positions were deÐned by a single parameter *lh ,
where is the fundamental band position andl

n
\ lf] n*lh , lfis the ““hot ÏÏ band shift. The band shapes were assumed*lhidentical to that of the fundamental band.

(2) A combination of bands 1 and 2 describing the m3] m4vibration.
(3) Several unidentiÐed bands, 3, 9, 10 and 11, required to

reproduce the proÐle correctly. These bands, except band 3,
do not substantially a†ect the main bands of interest (4È8).
Besides its signiÐcant contribution to the whole proÐle, the
inclusion of the band 3 is justiÐed because its appearance is
very pronounced in anisotropic spectra, especially at the
higher temperatures employed.

Developing the model for spectral band shapes

The model for the band shapes was developed by starting
from the simplest one and gradually changing it to a more
sophisticated one. This was e†ected by steadily adding more
features in order to reproduce all the details of the proÐle. The
criterion of the goodness-of-Ðt, as discussed above, was based
on the analysis of the Ðtting residuals. Generally, the di†er-
ence between experimental data and the Ðtted function at each
point is a random value, with its own distribution. Even
though these distributions are all normal with zero mean,
their dispersion may vary from point to point. Therefore, rig-
orously, it is necessary to accumulate several spectra under
exactly the same conditions and then analyse the residuals at
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each point, based on the statistics from the di†erent spectra.
However, we can assume that the distributions do not change
signiÐcantly in the neighbourhood of a data point, and the
statistics can be accumulated using a single spectrum from
several adjacent data points. We thus calculated the following
values as the surrogates of the mean and dispersion of the
residuals respectively :

*y
k
\

1

N
;

i/k~N@2

k`N@2
[y

i
[ ytheor(l

i
)],

k \ N/2 ] 1 . . .Ntot[ N/2, (3)

p6
k
\

1

N
;

i/k~N@2

k`N@2
[y

i
[ ytheor(li)[ *y

k
]2,

k \ N/2 ] 1 . . . Ntot[ N/2, (4)

where N is the number of adjacent points used for averaging,
their spectral intensity, their corresponding wavenumbersy

i
l
iand Ntot is the total number of data points. The value of N

was varied from 4 to 10 and in this range the Ðnal result was
not a†ected qualitatively. The dispersion of approximation is
also important as it serves as a gross characteristic of the
quality of Ðt : the lower the dispersion of approximation the
better the model. The values of the mean and dispersion cal-
culated in this manner, together with the dispersion of
approximation, are shown in Fig. 4 and the process of
developing the model is sequentially illustrated.

It is apparent that the simplest band shape, Lorentzian,
(curves a) is not a satisfactory description of the spectrum. A
more physically realistic model, expressed as a Fourier trans-
formation of the well-known Kubo correlation function,1
reduces the magnitude of the deviations of the mean from zero
but the situation is still far from acceptable (curves b). Also,
we found that the Kubo model is computationally inconve-
nient as the optimisation process was slow and unstable, even
when compared with the equally complex model of a Voigt
function expressed through its Fourier transform in time
domain.1

Using the Voigt band shape1 (Ðtting in the frequency
domain) improves the situation (Fig. 4, curves c) but there is

still room for further development. Interestingly, the intro-
duction of the symmetric linear corrections of form (2) (curves
d) does not change the picture qualitatively, even when a con-
siderable number of terms (up to 40) is used. This procedure
can be visualised as adding the identical correction, symmetric
with respect to the band centre, to all the bands 4È8 (Fig. 3).
The failure to Ðt the model properly thus means that the sym-
metric band shapes are incapable of describing the real spec-
trum, at least in the framework of the band set chosen.

Considerable progress is achieved when an asymmetric cor-
rection is used, Fig. 4e. Here, the correction function (2) has
the same number of terms, but they are di†erent and indepen-
dent on each side of the band. The only restriction left is that
the corrections are identical for all Ðve bands 4È8. The
resulting correction is shown in Fig. 5.

The surprising feature of this correction is that it is an
almost completely odd function. Inset (a) of Fig. 5 shows both
““wings ÏÏ of the function on one side with respect to the band
centre, the left ““wingÏÏ is transformed as f @(l) \ [f ([l). This
unique property of the correction, together with its shape, sug-
gests two important considerations. First, it can be approx-
imated by some suitable simple analytical function, and,
second, since the function is odd, the corresponding corre-
lation function of this vibration is a purely imaginary func-
tion. This means that we have a unique opportunity to extract
the imaginary part of the vibrational correlation function
from the experimental data.

We here use the ““double sine ÏÏ function for Ðtting the cor-
rection :

ycorr(l) \ [S0 sin(w0[l[ lmax])e~e0*l~lmax+2

[ S1 sin(w1[l[ lmax])e~e1*l~lmax+2, (5)

where and are Ðtting parameters andS0 , w0 , e0 , S1, w1 e1 lmaxis the band maximum position. This function has a compli-
cated oscillating character that is damped out at higher time
values, Fig. 5, inset (b).

The statistics of the Ðtting of the spectrum, using Voigt
band shapes with the ““double sine ÏÏ correction, is shown in
Fig. 4f. Indeed, the Ðt is almost as good as the one with asym-
metric correction, but the advantage now is that the band

Fig. 5 Asymmetric corrections (Ðlled circles) multiplied by 5, as used in the resolved spectral bands of the vibrations of liquid acetonitrile atm225 ¡C. Open circles, experimental points (shifted upwards by 0.1 units) ; solid lines, non-linear parts (Voigt function) ; and dotted lines, bands with
linear corrections. Inset (a), correction reÑected with respect to the band centre ; inset (b), ““double sine ÏÏ Ðt to the correction (solid line, Ðtted
function ; dashed line original correction, see text).
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shape reveals more clearly physical information. SpeciÐcally,
we can now obtain the proÐles of both the real and imaginary
parts of the vibrational correlation function.

The Ðnal improvement made to the spectral proÐle (curves
g) is the introduction of the additional bands 2, 3, 9, 10 and
11. These are located well away from the bands of interest,
4È8, and, though they cannot change their shape, they lower
noticeably the dispersion of approximation. Additionally, the
correction for the apparatus function of the interferometer
was introduced by increasing the Gaussian width of each
band. The apparatus function was approximated by the
Gaussian with width 0.87 cm~1.

Adding the ““double sine ÏÏ part to the model means intro-
ducing six more optimising parameters. This makes 11 param-
eters altogether for the set of bands 4È8. Although the Ðtting
situation is still acceptable, the model has some properties of
an overestimated case (see section ““Goodness-of-Ðt ÏÏ). Indeed,
as the calculated conÐdence intervals showed, the parameters
of the ““double sine ÏÏ part can be separated into two groups.
While one group, for example, the parameters of the Ðrst term,

and (eqn. (5)), have standard deviations in the rangeS0 , w0 e05È20% on average, those in the other group, and areS1, w1 e1,much less deÐnite, having conÐdence intervals of up to 80%.
These latter cannot be neglected, however, in that the use of a
““ single sine ÏÏ instead of ““double sine ÏÏ worsens considerably
the quality of Ðt. The only correct solution here is in Ðxing the
parameters with high standard deviations, and considering
them as constants. This implies the introduction of
““predeÐnedÏÏ information into the model, similar to informa-
tion contained in a particular band shape (for example, Lor-
entzian or Gaussian which have the same number of Ðtting
parameters but the di†erence in shape is contained in the form
of the functions). The Ðxed parameters are therefore shown in
Table 1 without specifying their conÐdence intervals.

Vibrational correlation functions of liquid AN

Since the spectral band consists of purely even (Voigt
function) and purely odd (““double sine ÏÏ) components, its
Fourier transform (after normalising, omitting the purely
oscillating part and considering positive time) has the form

C(t)\ exp
C
[

pL
2

t [
pG2
2

t2
D

] i
C1
2

S0
S p

e0
(e(~1@4e0)(t~w0)2 [ e(~1@4e0)(t`w0)2)

]
1

2
S1
S p

e1
(e(~1@4e1)(t~w1)2 [ e(~1@4e1)(t`w1)2)

D (6)

It has been shown both theoretically16 and
experimentally17h19 that the Raman vibrational correlation
function is essentially the sum of auto- and cross-correlation
functions, and has both non-vanishing real and imaginary
parts. Here we report the experimental complex correlation

functions of the vibration of the AN molecule at three tem-m2peratures, 25, 50 and 75 ¡C. The parameters of these functions
are presented in Table 1, together with their conÐdence inter-
vals. It is worth stressing that by using our approach essen-
tially all possible information is extracted from the
experimental spectra and, in fact, the reported correlation
functions are the experimental data for the dynamics of the
AN molecules.

A detailed analysis of the vibrational correlation functions
requires a careful study of modern theories of liquids. More-
over, since these functions are the sum of two unknown parts
of the correlation function (auto- and cross-), additional infor-
mation is needed for picturing speciÐc microscopic motions.
However, some general comments on the structure and
dynamics can be made.

The and parameters reported in Table 1 are thelmax *lhcharacteristics of the microstructure of the liquid. The trend
towards smaller di†erences compared to gas phase values is
shown with temperature increase (the corresponding gas
phase values are cm~1 andlmax \ 2266.7 *lh\ [4.9
cm~120). The band position is a characteristic of the strength
of the micro-environment inÑuence on the vibrating molecule
in the liquid, while the ““hot ÏÏ bands shift provides information
on the multi-surface dynamics of the molecule in the con-
densed phase.

Both real and imaginary parts of the correlation functions
are shown in Fig. 6. As expected, the real part of the functions
falls more rapidly as the temperature is steadily raised. Also,
their shape is changed systematically, the Lorentzian part (the
linear term in the real part of eqn. (6)) decreases and the
Gaussian part (the quadratic term) increases with tem-
perature. This increase of the Gaussian contribution together
with the overall decay rate make the 25 and 50 ¡C curves cross
at short time intervals (Fig. 6). The imaginary parts at all tem-

Fig. 6 Real and imaginary (inset) parts of the vibrational correlation
function of the vibrations of liquid acetonitrile at 25 (solid lines), 50m2(dashed lines) and 75 ¡C (dotted lines). Functions normalised to the
value at the origin.

Table 1 Vibrational dynamics parameters of the vibration of AN molecules at various temperaturesam2
25 ¡C 50 ¡C 75 ¡C

lmax/cm~1 2253.262^ 0.001(0.0%) 2253.490^ 0.0006(0.0%) 2254.078^ 0.003(0.0%)
*lh/cm~1 [4.10^ 0.03(0.8%) [4.62^ 0.03(0.6%) [4.61^ 0.09(2.0%)
pL/cm~1 2.61^ 0.06(2.3%) 2.19^ 0.06(2.7%) 1.61^ 0.3(18.3%)
pG/cm~1 0.70^ 0.05(6.7%) 1.13^ 0.03(2.7%) 1.40^ 0.12(8.4%)
S0 0.0017 0.011^ 0.0007(5.9%) 0.011^ 0.002(18.0%)
w0/cm~1 [0.78 [1.44^ 0.03(1.8%) [1.50^ 0.06(3.8%)
e0/cm~1 0.017 0.10^ 0.02(11.8%) 0.086^ 0.043(50.1%)
S1 0.0078^ 0.0009(12.0%) [0.0018 [0.0055
w1/cm~1 1.64^ 0.07(4.1%) [1.90 [0.61
e1/cm~1 0.14^ 0.03(22.9%) 0.031 0.022

a Relative errors in parentheses.
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Fig. 7 E†ect of the uncertainty in the parameter value for the
imaginary part of the vibrational correlation function at 25 ¡C. (a),
parameter (solid line dashed linee1 e1\ e1fitted \ 0.135, e1\ e1fitteddotted line (b), parameter[ *e1\ 0.104, e1\ e1fitted ] *e1\ 0.166) ;

(solid line dashed lineS1 S1\S1fitted \ 0.0078, S1\ S1fitted [ *S1\
0.0069, dotted line S1\S1fitted ]*S1\ 0.0088).

peratures of the correlation functions are substantial and the
uncertainties in the parameter values do not change the
picture qualitatively. An illustration of the inÑuence of the
limiting values of the two worst parameters is shown for the
25 ¡C case in Fig. 7. The imaginary part shows a complicated
behaviour with temperature that cannot be described as a
simple trend. Its parameters are obviously not related to
physical characteristics in a clear way and any explanation
will thus require a detailed analysis of the theory. Addi-
tionally, since the shape of the imaginary part di†ers dramat-
ically at all three temperatures more experimental data at
intermediate temperatures will be required to clarify their
behaviour.

One of the most elaborate models for the vibrational corre-
lation function can be found in the publications of Bratos et
al.16,21,22 The Ðnal formulae for vibrational correlation func-
tions are provided for the limiting cases of ““ slowÏÏ and ““ fast ÏÏ
modulation. Neither extreme case can Ðt the experimental
correlation function satisfactorily, and this means that the
intermediate case should be used. Unfortunately, obtaining
the applicable form for this case requires substantial e†ort,
including speciÐcation of the interparticle potential and many
other assumptions. This, together with an analysis of other
theories of vibrational relaxation (e.g., the ““ stretched
exponential ÏÏ model),4,5 will be the subject of a future pub-
lication.

Conclusions
Detailed quantitative data on the dynamics of acetonitrile
molecules in liquid phase is reported here. Using general
assumptions, the parameters of the structure and dynamics
have been obtained, together with their statistical character-
istics. This information can be used for testing various theo-
ries of liquids and work in this direction is currently in
progress. In particular, because of the behaviour of the ima-
ginary part of the correlation function at 25, 50 and 75 ¡C,

measurements at intermediate temperatures should be very
interesting.

Experimental
Acetonitrile was distilled four times, initially twice from P2O5 ,
then from before Ðnal distillation. Raman spectraK2CO3were measured using 0.5 cm~1 data point intervals on a
Ramanor U-1000 spectrometer (Jobin Yvon) with a resolution
of 0.15 cm~1. Full details are given in ref. 1 and 23.
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