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A hidden Markov state model has been applied to classical molecular dynamics simulated small peptide in
explicit water. The methodology allows increasing the time resolution of the model and describe the dynam-
ics with the precision of 0.3 ps (comparing to 6 ps for the standard methodology). It also permits the inves-
tigation of the mechanisms of transitions between the conformational states of the peptide. The detailed
description of one of such transitions for the studied molecule is presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Proteinmotion and function are defined by elementary conformation-
al transitions described by the changes of the backbone dihedral angles of
the biopolymer. Typically, the angles fluctuate around an averaged value
attributed to ‘metastable’ conformational states and occasionally change
the value significantly that correspond to conformational transitions.

The dynamics of such metastable states is often described using
the increasingly popular Markov State Model (MSM) [1–7]. The es-
sence of the model is in defining discrete protein conformations
such that the transitions between them at discrete time moments
are represented by a Markov process. As the mathematical apparatus
of Markov processes is well developed, the model provides useful in-
formation about the time evolution of the protein system.

One of the active themes in the MSM research is the validation of
the states definition. There is no rigorous description of how to divide
the continuous space of the protein's dihedral angles into areas desig-
nating the Markov states. The important requirement of MSM is the
Markov property of the states, that is the independence of the transi-
tions from previous steps. This puts a conceptual restriction on the
time scale of the model: the time step should be no less than the
memory of the system.

In practice the states are either assigned to the areas roughly
corresponding to the basins of attraction on the potential or free en-
ergy surface of the protein or constructed from the ‘microstates’.
The latter are defined using a fine grid covering the whole available
dihedral space of the system. The microstates are clustered into ‘mac-
rostates’ based on the time spent by the system in them [8]. The mac-
rostates are the collections of microstates for which the transitions
within a macrostate are more probable than between the macro-
states. As the microstates should be ‘short lived’, that is the transitions

within a microstate should be avoided, many of them are needed for
correct reconstruction of the macrostates.

The shortcomings of MSM can be avoided by allowing the states to
be non-Markov. A natural development of Markov processes theory is
the hidden Markov processes framework. Here, the transitions can
depend on the previous steps and these time dependent states are
grouped into sequences of consecutive states such that the sequences
themselves become Markov.

In this paper we develop a variant of the hidden Markov descrip-
tion of conformational transitions. We use the methodology called
‘Computational Mechanics’ (CM) developed by Crutchfield et al.
[9–11]. We show that applying this approach to protein dynamics
(which we term as non-Markov state model, nMSM) the detection
of short lived ‘transition’ states is possible by reducing the time step
by an order of magnitude compared to the usual MSM. By describing
the transitions at such fine time scale, the detailed mechanisms of the
transitions can be elucidated. In particular, the analysis of the
elementary conformational transitions, the building blocks of all pro-
tein conformational motions becomes possible. We have applied
Computational Mechanics to molecular systems in several contexts
[12–14]. Here we will concentrate on direct description of conforma-
tional motions of a peptide.

As themechanisms of the transitions can nowbe uncovered, the dura-
tion of the transitions themselves (not the times between the transitions,
but the actual process of conformational rearrangements) can be quanti-
fied. This is usually impossible to obtain inMSM as the time of transitions
is normally smaller than the time step of MSM. Also, the ‘recrossings’ can
be identified and studied, when the system exhibits several quick cross-
ings of the boundary separating the conformational states, the important
problem recognised by the community for many years.

2. The molecular system

We study a zwitterion L-alanyl-L-alanine, Fig. 1, a very convenient
model because i) the conformation of the molecule is completely
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defined by the two dihedral angles ψ and ϕ, ii) in water the conforma-
tion ψ≈2.5, ϕ≈−2.2 radians is prevalent, however very rare transi-
tions to two other metastable conformations take place, Fig. 1 right, and
iii) the transitions only happen in water because the molecule's charged
ends lock it in a ‘loop’ like conformation in vacuum.

The molecule is, thus, a good model of protein conformational
changes at the same time being technically advantageous: the transi-
tions are clearly defined and well separated in time.

The simulationwas performed using the software package GROMACS
[15]. The peptide was solvated by 396 water molecules. The simulation
box was 25×22×22Å. The force field was Gromos 53a6 [16–18]. This is
optimized for bimolecular systems interacting with water. Electrostatic
interactions were treated by Particle Mesh Ewald (PME) summation
technique. Periodic boundary conditions were used. The temperature
was kept at 300 K using the Berendsen thermostat [19]. The integration
algorithm was a Verlet type and the integration step was 0.002 ps. The
system was carefully equilibrated before it was sampled.

3. Methodology

The three metastable states, clearly visible on the density of
states, Fig. 1, allow to introduce a simple natural discretisation of
the conformational states. By also discretising time with a step Δt
the continuous MD trajectory can be converted into a string of sym-
bols {si}, i=0…N, where si equals to ‘A’, ‘B’, or ‘C’ depending on
where the trajectory point falls at the time moment ti, N is the num-
ber of time steps.

The analysis of {si} can be done by building an MSM on them, or, as
we do here, by applying a hidden Markov model.

Computational Mechanics builds a statistic on infinitely long his-
tories (‘pasts’) of symbols si representing the state of the system at
times ti, si

← ≡ …si−2si−1sif g, by analysing the ‘futures’ si
→≡ siþ1siþ2…f g

following each past. The focus is shifted from the physical conforma-
tional states si to their sequences si

←
and si

→
. In this manner, the natural

interdependencies of the conformational states are included in the
picture, at the same time preserving the well developed mathemati-
cal apparatus of Markov processes.

The algorithm groups the pasts into classes called ‘causal
states’ �j. The criterion of grouping is the equivalence of the prob-
abilities of the futures, that is two pasts si

←
and sj

←
are assigned to

the same causal state if the distributions of their futures are the
same:

P s
→

si
←
���

�
¼ P s

→j sj
←

� �
;

�
ð1Þ

where P(X|Y) is the probability of X given Y. Thus, instead of the tran-
sitions between the states si the dynamics of the system is described
by the probabilistic transitions between the causal states �i. Impor-
tantly, the sequence of �i is Markovian by definition regardless of the
properties of the original process si. The collection of the causal states
together with the transition probabilities between them is called an
‘�-machine’. The detailed definition of an �-machine is provided in
Appendix A. �-machines can be reconstructed from observed data
{si} using the CSSR algorithm described and implemented in [20].
Computational Mechanics has been successfully applied to many
real world physics systems. One of the most important example is
the use of the �-machine to analyse the structure of complex disor-
dered materials [21,22].

Theoretically, CM is formulated using the assumption of infinitely
long pasts and futures. In practice a finite history length l has to be
chosen and this is one of the adjustable parameters of the CSSR algo-
rithm (the length of the future is always chosen to be 1). The number
of possible histories grows exponentially with the history length.
Therefore, for long histories an exponential increase in the number
of data points is also needed.

The second parameter of the CSSR algorithm is the significance
level σ used in comparing the distributions Pð s→ si

←
���

�
for grouping the

histories into causal states, Eq. (1) (the Kolmogorov–Smirnov test is
used). Too large σ values (too strict threshold for two distributions
to be considered equivalent) lead to artificially too many causal
states. This is equivalent to under-sampling the histories. The same
situation takes place for too long history length since the number of
possible histories is too large and, for moderately long experimental
time series, the distributions Pð s→ si

←
���

�
become not statistically

significant.
Therefore, for obtaining the robust results, it appears necessary to

perform the analysis of the �-machine as a function of these two pa-
rameters. Too long a history or too large a σ value leads to statistically
incorrect results. As the authors of CSSR recommend, the value of σ
should be chosen such that there is a ‘plateau’ in the number of causal
states as a function of l. If there are several such values of l then the
lowest one has to be chosen (according to the minimality principle
of CM). This constant value of l is the ‘true’ value of the history length
for a stable �-machine architecture.

The states of the �-machine consist of the sequences of the confor-
mational states. Therefore, strictly speaking it is incorrect to identi-
fy the states of the machine �i with the conformational states si.
However, if the system spends long time in one of the conforma-
tional states, the �-machine states at those times would prevalently
consist of a sequence of repeating conformational states (for
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Fig. 1. Left: L-alanyl-L-alanine zwitterion and the normalised density of its conformations (Ramachandran plot) formed by a 1 μs trajectory; right: the same probabilities
emphasising the presence of two minor conformations and the partitioning for symbolisation.
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example, for an ‘A’ state, that would be si
← ≡…AAAAA). Thus, an ap-

proximate correspondence between the metastable MSM and
nMSM states is possible.

The most interesting moments are when the �-machine gen-
erates short lived transition states. These describe the mecha-
nisms of transition between the metastable conformational
states.

4. Results

For the studied peptide, the minimal time step for which the
conformational states are Markov is Δt=6 ps. The dynamics is
represented by a usual transition matrix, and a transition is
when symbol ‘A’ (Fig. 1) at time step i changes to symbol ‘B’ at
time step i+1. The matrix gives the probabilities of the transi-
tions:

siþ1 A B C
si
A 0:996 0:003 0:001
B 0:261 0:737 0:002
C 0:097 0:002 0:901

In this representation the A→B transition happens once in 3.1 ns
on average. We will concentrate on this particular transition for the
rest of the paper.

For the time step of Δt=5 ps the dynamics becomes non-Markov,
as the �-machine demonstrates. The followingmatrix shows the num-
ber of reconstructed causal states �i as a function of the history length
l and the significance level σ (see Section 3):

l 1 2 3 4 5 6 7 8 9
σ

0:1000 3 6 6 6 6 6 6 6 25
0:0656 3 7 7 8 8 8 8 8 8
0:0430 3 4 11 13 14 14 18 24 57
0:0282 3 4 4 10 11 13 20 24 41
0:0185 3 4 4 4 4 4 4 4 4
0:0122 3 4 4 4 4 4 4 4 4
0:0080 3 4 4 4 4 4 4 4 4
0:0052 3 4 4 4 4 4 4 4 4
0:0034 3 4 4 4 4 4 4 4 4
0:0023 3 4 4 4 4 4 4 4 4
0:0015 3 4 4 4 4 4 4 4 4
0:0010 3 4 4 4 4 4 4 4 4

A clear ‘plateau’ is present with the minimum number of two steps
necessary to reconstruct the �-machine.

As each timemoment is assigned a causal state (a collection of one
or more sequences si

← ≡ …si−2si−1sif g), the conformations of the pep-
tide corresponding to each causal state can be collected and analysed.
The distribution of the conformations for each state together with the
�-machine is shown in Fig. 2.

State ‘0’ in Fig. 2 corresponds to the conformational state ‘A’ as it
consists of the sequences ‘AA’. The distribution of the peptide confor-
mations (Fig. 2, left) for state ‘0’ coincides with the distribution locat-
ed in the ‘A’ area of Fig. 1. Similarly, states ‘3’ and ‘1’ correspond to the
conformational states ‘B’ and ‘C’ respectively. The additional fourth
state labelled ‘2’ describes the transitions between ‘A’ and ‘B’ (se-
quences ‘AB’ and ‘BA’). At this time resolution (5 ps) the time preci-
sion is not enough to distinguish between the forward and the
reverse transitions, therefore, state ‘2’ includes both A→B and B→A
processes. The length l=2 time steps also define the time scale at
which the internal mechanism of the transitions becomes important:
5 ps.

By further reducing the time step more details are revealed. At
Δt=2.5 ps three steps become correlated and the minimal �-machine
consists of 7 causal states:

l 1 2 3 4 5 6 7 8 9
σ

0:1000 4 11 11 12 12 12 12 12 54
0:0656 4 11 11 12 12 12 12 12 40
0:0430 4 11 11 12 12 12 12 12 40
0:0282 4 9 9 9 9 9 9 9 9
0:0185 3 9 9 9 9 9 9 9 9
0:0122 3 9 9 9 9 9 9 9 9
0:0080 3 8 7 7 7 7 7 7 7
0:0052 3 8 7 7 7 7 7 7 7
0:0034 3 8 7 7 7 7 7 7 7
0:0023 3 8 7 7 7 7 7 7 7
0:0015 3 6 8 7 7 16 23 34 29
0:0010 3 6 9 8 8 17 24 35 30

Now all transitions between the pairs of conformational states A–B
and A–C are resolved (direct transitions between B and C are almost
never realised). The same 5 ps time scale is present, however one ad-
ditional step in the middle of the process is needed to describe the
details.

The most detailed information is obtained for Δt=0.3 ps. This is
the minimal time step achievable for the amount of data, that is the
number of transitions realised during 1 μs. For this at least 4 time
steps are needed and the number of causal states reconstructed is 14:

l 1 2 3 4 5 6 7 8 9
σ

0:1000 4 9 17 21 26 33 41 80 151
0:0656 4 9 16 17 22 27 28 76 134
0:0430 4 9 15 19 20 31 34 84 157
0:0282 4 9 16 19 19 24 31 87 172
0:0185 4 9 15 17 19 20 20 30 139
0:0122 4 9 15 14 14 14 14 31 143
0:0080 4 9 15 14 14 14 14 31 143
0:0052 4 9 15 14 14 14 14 31 143
0:0034 4 9 16 14 14 14 14 31 143
0:0023 4 9 17 18 19 21 29 53 139
0:0015 4 9 17 17 17 17 17 17 140
0:0010 4 9 13 13 13 13 13 13 69

Despite the many states found, the causal states corresponding
to the metastable conformations can be similarly identified. State
‘0’ corresponds to ‘A’, while state ‘9’ describes the metastable con-
formation ‘B’. The �-machine very conveniently describes the de-
tails of the A→B transition: these are the causal states ‘2’, ‘7’, ‘4’,
and ‘8’, Fig. 3.

The system enters into the A→B transition when it goes from the
causal state ‘0’ to the causal state ‘2’ (going to state ‘3’ from ‘0’ corre-
sponds to the A→C transition). From state ‘2’ there are two possibil-
ities: one leads to the transition to ‘9’ corresponding to the actual
A→B transition, the other eventually returns to state ‘0’ and repre-
sents a failed transition. By assuming that going from ‘0’ to either ‘9’
or back to ‘0’ has the probability of 1, the probabilities of different
routes of the system are summarised in Table 1.

The number of returns is very significant: only 63% of the attempts
are successful. Also, even thought the prevalent sequences are direct
(for example 0279), the repetitions of the states are also non-
negligible (for example 024279). These show that the recrossings are
very important in the dynamics.

For this model, the transition A→B (that is the left column of
Table 1) happens once in 2.4 ns on average, which is substantially
smaller than the number provided by MSM (3.1 ns).
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As the �-machine provides a very detailed picture of transitions,
the flow of the dihedral angles ψ−ϕ can be visualised. The two
routes, corresponding to the left and right columns of Table 1 are
shown in Fig. 4. The small time step allows a rather precise identifica-
tion of the transition moment. Thus, different moments in advance of
the transition can be shown. Interestingly, the dynamics seems to be
very similar for both routes up to ≈3 ps before the transition. It then
becomes different resulting in either going to conformation B or
returning to A.

Overall, the mechanism shows that the direct transition is very
fast, it takes only ≈4 time steps, that is 1.2 ps. The significance of
this fact is that this time is substantially smaller than the minimally
allowed time scale for the standard MSM. Therefore, important de-
tails can be overlooked, at least for small peptides like the studied
one. The reason for the relatively large required time steps in
MSM is in multiple recrossings that are masked by the larger time
steps and thus, made the dynamics Markovian. This provides an-
other evidence of the usefulness of nMSM in studying peptide
dynamics.

5. Conclusions

We present a development of Markov state method that incorpo-
rates non-Markov behaviour of the conformational states of the pro-
tein. The method avoids several shortcomings inherent to MSM. In
particular, there is no need for many microstates for identifying cor-
rect metastable states. The dynamics of the system finds the states
automatically.

Most importantly, the methodology provides a possibility of re-
ducing the time step, thus, increasing the time resolution of the
model. In principle, the resolution is only restricted by the amount
of available data for the analysis, whereas in the standard MSM the
time resolution restriction is conceptual.

Our method provides a detailed description of the mechanisms
of the transitions. It identifies the importance of multiple
recrossing and quantifies their probabilities. As the mechanisms
of the transitions can now be elucidated with high time resolution,
a detailed molecular picture of conformational motions can be
obtained.
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The mechanisms of the transitions for this particular peptide
shows that there is, probably, other important degrees of freedom
that need to be included in the picture. We hypothesise that such de-
grees of freedom should include water molecules and this is the sub-
ject of our subsequent publications.

Appendix A. Computational mechanics

All past si
←

and future si
→
halves of bi-infinite symbolic sequences

centred at times i are considered. Two pasts s1
←

and s2
←

are defined

equivalent if the conditional distributions over their futures Pð s→ s1
←
���

�

and Pð s→ s2
←
���

�
are equal. A causal state � si

←
� �

is a set of all pasts equiva-

lent to si
←
: �i≡� si

←
� �

¼ λ : Pð s→λj Þ ¼ Pð s→ si
←
���

�n o
. At a given moment the

system is at one of the causal states, and moves to the next one with

the probability given by the transition matrix Tij≡P(�j|�i). The transition
matrix determines the asymptotic causal state probabilities as its left ei-
genvector P(�i)T=P(�i), where∑ iP(�i)=1. The collection of the causal
states together with the transition probabilities define an �-machine.

It is proven [23] that the �-machine is

– a sufficient statistic, that is it contains the complete statistical in-
formation about the data;

– a minimal sufficient statistic, therefore the causal states cannot be
subdivided into smaller states;

– a unique minimal sufficient statistic, any other one simply re-labels
the same states.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.molliq.2012.06.011.
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Fig. 3. Left: the �-machine for the time step 0.3 ps, the length of the sequences is l=4,
state ‘0’ corresponds to the original state ‘A’ (mostly consists of the sequences AAAA),
similarly, state ‘9’ corresponds to ‘B’, state ‘9’ can only be reached from state ‘0’ via
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transition with several recrossings (middle, probability 0.03), failed attempt of transi-
tion (bottom, probability 0.27), the probabilities of these cases are given assuming that
the probability of going from state ‘0’ or to state ‘9’ by any possible route is 1.

Table 1
The sequences of causal states describing two routes realised when leaving state ‘0’ and
their probabilities, see Fig. 3.

A→B A→A

Sequence Probability Sequence Probability

0279 0.56 02480 0.27
024279 0.03 027480 0.08
0248279 0.02 0242480 0.01
0274279 0.009 02482480 0.007
02748279 0.006 02742480 0.004
02482424279 0.001 02427480 0.003

Total: 0.63
0242482480 0.001
Total: 0.37
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Fig. 4. The flow of the dihedral angles describing two different possibilities of going from state ‘0’: left, the A→B transition, right, failed transition and return to state A; the numbers
show the time before the transition is complete (that is when the system reaches either state ‘0’ or state ‘9’); the time moments at the last symbol of the histories are chosen for
visualisation.
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