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A 21-residue peptide in explicit water has been simulated using classical molecular dynamics. The system's
trajectory has been analysed with a novel approach that quantifies the process of how atom's environment
trajectories are explored. The approach is based on the measure of Statistical Complexity that extracts
complete dynamical information from the signal. The introduced characteristic quantifies the system's
dynamics at the nanoseconds time scale. It has been found that the peptide exhibits nanoseconds long
periods that significantly differ in the rates of the exploration of the dynamically allowed configurations of
the environment. During these periods the rates remain the same but different from other periods and from
the rate for water. Periods of dynamical frustration are detected when only limited routes in the space of
possible trajectories of the surrounding atoms are realised.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Despite intensive research the protein folding problem remains
largely unsolved. While the commonly accepted picture of “folding
funnel” explains the overall behaviour of the system during folding,
dynamically it is unclear what drives the molecular trajectory through
the structural changes leading to the native state. Two features of
molecular dynamical systems present major difficulties: its extremely
high dimensionality and nanoseconds time scale between the major
configurational changes of the protein molecule (the formation of the
folding motifs such as α-helix and β-sheet). The local dynamics of the
system (the only source of complicated folding behaviour) is
commonly described using molecular parameters such as correlation
times and transport coefficients with characteristic time scale of the
order of few picoseconds. Thus, new methodologies that provide
information about the behaviour of the high dimensional molecular
trajectory at the nanoseconds time scale are desirable.

Classical molecular dynamics is a tool that is capable of simulating
realistic protein systems in water at nanoseconds times. Currently com-
putational power is enough to simulate small fast foldingpeptides at times
uptocomplete folding. Therefore, it isnowpossible toobtain trajectoriesof
the systemwith virtually any precision and details. This provides a unique
opportunity to develop new conceptual methodologies for studying the
dynamics of the system at the time scale of the conformational changes
and up to folding in details inaccessible in experiment.

Molecular dynamics has long been used to analyse the dynamics of
molecules by utilising, among other characteristics, various auto-
correlation functions and diffusion constants. In relation to protein

folding it has been found that water molecules around protein exhibit
anomalous diffusion and behave like water at a lower temperature
than the bulk water [1–3]. The velocity autocorrelation functions of
protein atoms have been analysed and related to experimental
spectroscopic data [4].

In all these studies, however, the time covered by the dynamical
quantities does not exceed few tens of picoseconds. Moreover, to the
best of our knowledge, all known dynamical characteristics of
molecular systems that quantify local dynamics (not the gross
quantities such as the parameters of the folding motifs, gyration
ratio, etc. that are the result of the local dynamics) reach their limiting
values at these times and remain unchanged at longer times. For
example, deviations from normal diffusion have been detected by the
analysis of higher moments of the mean square displacement inwater
[5,6] at times longer than the commonly accepted few picoseconds.
However, the diffusion reaches its limiting value at times above
≈100 ps [5,7]. Nevertheless, despite this absence of correlations at
longer times the local dynamics leads to the emergence of non-trivial
structure at the time scale several orders of magnitude longer than the
characteristic time of the common descriptors.

In the present study we introduce a fundamentally new dynamical
characteristic, based on the information theoretical approach Computa-
tional Mechanics [8–10]. We show that the methodology provides
quantitative information on the process of how the space of allowed
trajectories of the neighbouring atoms is explored. The time spawned by
ourmeasure is of the orderof nanoseconds, that is thecharacteristic time
of elementary structural changes (formation anddestruction of thebasic
folding motifs such as helices, sheets, turns, etc.) in realistic proteins
during folding. Themeasure has been shown to reveal time correlations
inmolecular signals at the hundreds of picoseconds time scale and even
longer [11]. It quantifies the ratewithwhich the trajectory of the system
explores the allowed areas in the phase space [12].
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We have simulated a 21-residue peptide in explicit water that is
known to quickly form an α-helix. We have found that while water
molecules' environment is explored with the same rate as in the bulk
water [11] during the whole time of simulation, the protein atoms
exhibit long periods that differ in the rate of the exploration. Because
of the matching time scale we hope that the introduced measure can
be related to the structural changes occurring in the peptide.

2. The idea

Consider a molecular trajectory in the full-dimensional phase
space.With time it generates 2N-dimensional pointsqi≡(xi,pi) (Fig.1),
whereN is the number of the system's degrees of freedom and xi, pi are
the coordinates andmomenta of the atoms. N is of the order of several
thousands even in MD simulations, and of the order of Avogadro
number for real systems. In order to extract any sensible information
from the series {qi} a function has to be chosen that converts the full-
dimensional points to a low-dimensional observable Ai= f(qi). Because
of the low-dimensionality of A and the finite precision of measure-
ments, different qi can be mapped to the same values of A. Therefore,
the function f partitions the phase space Γ into mutually exclusive and
jointly exhaustive sets, on each of which f takes a unique (up to the
tolerance) value (Fig. 1).

For example, the velocity of one of the atoms v can be taken as such
a function. The velocity is the function of all phase space variables in
the sense that its value depends on the coordinates and momenta of
all other atoms (taking into account the past values of the latter, see
the details at the end of this section). It is easy to see that in this case
different values of q, when the differences are in the positions or
velocities of distant atoms, correspond to the same values of A≡v, that
is the velocity of the chosen atom.

Thus, we would like to analyse a low-dimensional signal {Ai}. The
analysis is normally done in the form of a statistic on the series,
considering A as a random variable, that is a stochastic process (a
deterministic signal is a limiting case of the stochastic process with
the probabilities being the δ-functions). Elaborating the example with
the velocities the observable can be chosen to be the scalar product of
the velocity values at times t and t+τ: CA(τ)≡vt ·vt+ τ.1 If the statistic is
calculated as a simple time average we obtain the velocity auto-
correlation function C τð Þu 1

T ∑
T
t vt � vtþτ , where T is the total lumber of

points in the signal.
In Computational Mechanics [8–10] the statistic is built on the

histories (pasts) of the observable {At
−≡…At−2At−1At} in such a way

that they are grouped into so-called “causal states”. The criteria of
grouping is defined on the future sequences (futures) that follow each
history. Two pasts Ai

− and Aj
− belong to one causal state if they

produce the same (statistically) futures. In terms of probabilities two
pasts are defined equivalent if the conditional distributions over
their futures P(A+|Ai

−) and P(A+|Aj
−) are equal. In this way all possible

histories of the signal are distributed between the causal states.
Moving from point to point in the observed series {Ai} is converted to
the transitions from one causal state to another. There is a number of
very useful fundamental properties of this representation of the
signal that are described in Appendix A. Perhaps the most important
property of the formalism in the scope of the present study is the
completeness of the dynamical information extracted from the
signal. This is in contrast to almost all dynamical characteristics used
to analyse molecular dynamics (autocorrelation function, for
example, is a very crude, two-point linear characteristic).

Consider two signals of the observable {Ai}, i=0…T1 and i=0…T2.
Let's choose T1,2 such that they are significantly longer than the
characteristic time of the analysed dynamical quantity. For the
velocity autocorrelation example the characteristic time can be
the value of i when the correlations become essentially zero. For
the ComputationalMechanics case this can be the length of the histories
A− at which the causal states structure does not change (see Section 3).

In this setting the phase space trajectory passes many times
through the same partitions Ai accumulating the statistics on the same
sequence of the observable (Fig. 2). The statistics produced by the two
signals would be different if the values of T1,2 are not high enough, that
is new passes of the trajectory alter the probabilities of the observable
sequences. At some values T1,2NT′ the statistics would become
essentially the same. This limiting statistic would produce a limiting
value of the analysed dynamical quantity (in the autocorrelation
function example the function would converge to its “true” value). To
the best of our knowledge for all common dynamical characteristics of
molecular systems T′ does not exceed few tens of picoseconds.

We have found that in the case of Computational Mechanics, the
causal states structure never converges at least at the lengths of
feasibleMD simulations. From the phase space trajectory point of view
this means that the system produces different futures for the same
pasts at all observed in the simulation times (Fig. 2). It should be
stressed that this behaviour is not an artefact of the procedure of the
analysis, but rather an intrinsic property of the molecular dynamical
system. Extensive tests illustrating this are provided in [12] and
summarized in Appendix B.

Similar behaviour can be observed for, for example, the mean
square displacement of an atom hx2 tð Þi, where x is an atom's
coordinate. This quantity also diverges with time. However, there is
a fundamental difference in the case of Computational Mechanics:
non-trivial behaviour at all times is observed, whereas the diffusion
constant characterising the displacement quickly reaches its limiting
value.

The differences in the dynamics of v are completely defined by the
dynamics of the environment of the atom, that is the coordinates and
momenta of the neighbouring atoms. Indeed, the time evolution of
the velocity is defined by the Newton equation :v ¼ − 1

mF, where the
force F derived from the interatomic interaction potential V is a
function of the surrounding atoms' coordinates xi: F=−∇V≡ f(xi)|i=1..N.
When considering the histories of the velocity values {vt} they become
the functions of the histories of the neighbouring atoms' coordinates
and momenta (Fig. 3).

The number of possible combinations of the trajectories of the
atoms influencing the atom under consideration is extremely large.
Therefore, a long time is required for exhaustively sampling all of
them. That is the statistic on them, quantified by the ϵ-machine, would
change as more and more dynamically allowed combinations of the
trajectories are realised in the simulation. In this sense the changes
in the ϵ-machine quantify how the space of neighbourhood atoms'

Fig.1. Schematic illustration of themapping of a full-dimensional phase space trajectory
qi to a macroscopic observable Ai. The phase space Γ is partitioned such that in each
partition the value of A is the same.

1 More precisely, in this case the observable is more involved: it is not a number, but
a τ-dimensional vector of the products CA≡{vt ·vt+ j|j=0…τ} for each time t.
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trajectories is explored. Our results demonstrate that the latter is very
different for the solvent and the protein atoms.

3. The method

3.1. The observable Ai

The way we construct the observable A for the analysis in the
framework of Computational Mechanics involves several steps. Each
step is based onwell grounded theoretical approaches and verified by
extensive numerical tests.

First, we have chosen the velocity of one of the hydrogens as a
continuous molecular signal. Then, the velocity was sampled in a way
that resembles the construction of the Poincare section thus providing
the points on the trajectory at the average intervals of 0.03 ps. This
value corresponds to the first minimum on the velocity autocorrela-
tion, a recommended in signal analysis sampling rate.

It turns out that for long enough histories in the Computational
Mechanics framework it is sufficient to choose a very coarse-grained
observable such as a symbol that can take on a value from a finite
alphabet. In other words, the atom's velocity space can be partitioned
into few areas labelled with symbols (Fig. C.1). We have tested the
cases of 2, 3, 4, and 5 symbols alphabets and found that starting from
size 3 alphabet and higher the results produced by Computational
Mechanics are essentially the same. Therefore for all our calculations
we used symbols from the alphabet {0, 1, 2}.

The described procedure resulted in a sequence of typically two to
fivemillions symbols that was shown to contain most of the statistical
information from the original molecular trajectory (see Appendix C for
details).

3.2. The statistic: Computational Mechanics

In the framework of Computational Mechanics the “past”
sequences of length l are formed from the analysed signal together
with their probabilities (computed as the number of occurrences of a
sequence divided by the total number of sequences). The pasts are
then grouped into the “causal states” ϵi using the criteria of
the statistical equivalence of the “futures” following each “past”:
ϵi≡{λ: P(A+|λ)=P(A+|Ai

−)}, where A− and A+ are pasts and futures
respectively. Each state has its own probability defined by the
probabilities of the pasts constituting the state. A matrix of transition
probabilities from state to state defines the Markov sequence of the
causal states in the signal (note: the signal itself can be non-
Markovian). The collection of the causal states together with the
transition probabilities constitutes the ϵ-machine. The rigorous
definition of the ϵ-machine and its mathematical properties are
given in Appendix A.

The Statistical Complexity is the informational measure of the
size of the ε-machine and quantifies the amount of information
about the past of the system that is needed to predict its future
dynamics: Cµ=H[P(ϵi)], where P are the probabilities of the states
and H is the Shannon entropy of the distribution of a random
variable ν, H[P(ν)]≡−∑vP(ν) log2 P(ν). ϵ-machines can be recon-
structed from observed data using the CSSR algorithm described
and implemented in [13].

As an illustrative example, consider an infinite sequence of symbols
from the alphabet {0, 1}:…0101010101…. The ϵ-machine for this signal
is shown in Fig. 4. Causal state B consists of all pasts of the form…0101,
while the state C contains the pasts …1010. When leaving the state B

Fig. 4. ϵ-machine for the symbolic sequence shown on the left. A, B, and C are causal
states. The numbers on the arrows show the transition probabilities between the states
when emitting either 0 or 1.

Fig. 2. Two signals {Ai} of different lengths T1,2 generated from the same molecular trajectory. The trajectory q passes through the same partitions of the macro-observable A thus
accumulating the statistic on the history {At −2At −1At}. For T1≠T2 the statistic can be different in that the same history {At −2At −1At} can be followed by the futures At+ 1 and A′t +1 with
different probability distributions for T1 and T2.

Fig. 3. The atom's velocity time signal v(t) is a function of the trajectories of the
neighbouring atoms ri(t) (see text for details).
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symbol 0 is emitted with probability 1 and the process is transferred to
state C (when adding 0 to the history…0101, that belongs to the state B,
the current past becomes …1010). The initial state A, containing both
histories …0101 and …1010, is required to start the process and the
probabilities of emitting either 0 or 1 on leaving this state are equal.

A finite length of the pasts and futures has to be chosen in practical
calculations. We have tested various lengths and found that from the
length 6 and longer the results are essentially the same. Therefore, we
have used the length 9 in all the calculations.

Thus, the dynamical quantity of interest is the Statistical Complex-
ity Cµ. We are interested in the behaviour of this quantity at different
lengths of the signal T′ (see Section 2). Therefore, we calculated the
values of Cµ as a function of the signal length (simulation time) T.

4. Molecular system and simulation details

We have chosen a 21-residue peptide A5(A3RA)3A from the review
[14] where it is reported to fold in 0.8 µs on average. The forcefield for
the simulations was GROMOS96 [15]. The peptide was solvated by
1658 SPC water molecules [16] and after proper minimisation of the
system's energy was simulated for 0.5 µs using the GROMACS
molecular dynamics [17] package. The temperature and the pressure
of the systemwere kept constant at 300 K and 1 bar respectively using
Berendsen [18] thermostat. A sufficient equilibration was performed
before collecting data for analysis. We have not reached the folded
state, however, prolonged periods of the existence of β-sheet and α-
helix motifs were recorded (see Section 5). The velocities of one of the
water hydrogens, and of the nitrogens of the residues 1 and 3 were
taken for the analysis (see Appendix C for the signal processing details).

5. Results

We have found that the Statistical Complexity Cµ grows logarith-
mically with the signal length T. This is clearly seen in the log2T−Cµ
coordinates, Fig. 5. The data can be fitted by the curve Cµ=a+hQ log2 T
where the parameter hQ quantifies the growth of the Statistical
Complexity value. hQ characterises the changes in the ϵ-machine, that
is the changes in the statistic on the histories (see Section 2). The
changes are defined by the rate with which the space of dynamically
allowed trajectories of the neighbouring atoms is sampled (explored).

Themainresult reported in this study is thequalitativeandquantitative
difference in hQ for water and protein atoms (Fig. 5). While for water the
environmental configurations are explored uniformly, producing a perfect
line on the log2T−Cµ plot, the peptide exhibits well pronounced periods

with significantly different rates of the exploration.Within one period the
growth can still be satisfactory fitted with a line. Importantly, the changes
between the periods are quite sharp such that the whole curve is divided
into well separated parts. This can also be seen in Fig. 6 where the same
fitted curves were plotted in linear time coordinates.

In the figure the values of hQ are also plotted for the corresponding
periods. For some periods the growth is faster, for others—slower than
for water. Sometimes the exploration rate becomes very low,
signalling that the peptide atoms environment has covered almost
completely the (dynamically) allowed area. The number of possible
combinations of the neighbouring atoms trajectories is extremely
large (even for only energetically allowed phase space areas) and they
can not be exhaustively sampled in the relatively short time of the
simulation. Therefore, the slow change in the statistic on the histories
indicates a dynamical frustration at these periods of the protein's

Fig. 6. Top: the trajectory length dependence ofCµ for: blue—water hydrogen, red—residue
1 nitrogen, green—residue 3 nitrogen. Middle: the values of hQ at the intervals of the
constant growth as in Fig. 5. Bottom: the assignment of the peptide's structural motifs for
each residue; red—β-sheet, blue—α-helix, yellow—turn, green—bend, black—β-bridge.

Fig. 5.Dependence of Cµ on the logarithm of the trajectory length T. From top to bottom: the hydrogen of one of thewatermolecules, the nitrogens of the first and third residues of the
peptide respectively. The solid lines represent the linear fits, shifted downwards for clarity.
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evolution. In other words, the neighbourhood of the atom moves
along a very limited set of routes selected by the dynamics from the
space of all possible trajectories. It is interesting to note, however, that
on average the value of hQ does not differ substantially from that of
water molecules. This is, perhaps, the indication of the fact that hQ is a
characteristic of the whole dimensional phase space, rather than the
dynamics of the individual atoms under consideration. The dynamical
frustration found here could be related to the general considerations
of the emergence of complex dynamics in systems possessing
explicitly this sort of frustration [19].

We have also plotted the classification of the structural motifs of
the peptide generated by the DSSP algorithm [20], Fig. 6. The figure
illustrates the same time scale of the changes in the foldingmotifs and
the values of hQ. It is difficult to extract specific correlations between
the two and data on other peptide's atoms is needed for more
substantiated analysis, which is the subject of our current work.

6. Conclusions

A new measure hQ has been introduced that characterises the
dynamics of molecular system at the nanoseconds time scale. The
measure quantifies the way the dynamical patterns in the trajectories
of the neighbouring atoms are explored. For water hQ is found to be
constant that implies a uniform covering of the patterns. For the
peptide atoms, hQ exhibits well separated periods of very different
rates of the environment exploration. In some periods the values of hQ
are very low suggesting small volumes of the dynamically allowed
configurational space, a dynamical frustration. For others, the rate is
significantly higher than that of water.

Since the lengths of these periods are of the order of tens of
nanoseconds, they can potentially be correlated with the structural
changes of the peptide, because the changes belong to the same time
scale. Further investigations that would include other atoms of the
peptide are required and they are the subject of our current work.
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Appendix A. Computational Mechanics

Computational Mechanics analyses symbolic dynamics. All past Ai
−

and future Ai
+ halves of bi-infinite symbolic sequences centred at times

i are considered. Two pasts A1
− and A2

− are defined equivalent if the
conditional distributions over their futures P(A+|A1

−) and P(A+|A2
−) are

equal. A causal state ϵ(Ai
−) is a set of all pasts equivalent to Ai

−: ϵi≡ϵ(Ai
−)

={λ : P(A+|λ)=P(A+|Ai
−)}. At a given moment the system is at one of the

causal states, and moves to the next one with the probability given by
the transition matrix Tij≡P(ϵj|ϵi). The transition matrix determines the
asymptotic causal state probabilities as its left eigenvector P(ϵi)T=P
(ϵi), where ∑i P(ϵi)=1. The collection of the causal states together with
the transition probabilities define an ϵ-machine.

It is proven [21] that the ϵ-machine is

– a sufficient statistic, that is it contains the complete statistical
information about the data;

– a minimal sufficient statistic, therefore the causal states cannot be
subdivided into smaller states;

– a unique minimal sufficient statistic, any other one simply re-labels
the same states.

The Statistical Complexity is the informational measure of the size
of the ε-machine and quantifies the amount of information about
the past of the system that is needed to predict its future dynamics:
Cµ=H[P(ϵi)], where H is the Shannon entropy.

Appendix B. Computational Mechanics produces
consistent results

Two parameters of the algorithm should be set in calculating Cµ of
a signal of given length (we used a trajectory of bulk SPC water at
300 K of 30 ns long, that is ≈1 million data points), the alphabet size K
and the length l of the histories A− used by the ϵ-machine
reconstruction algorithm CSSR.

The dependence of Cµ on both parameters is shown in Table B.1.
The convergence with l is excellent, so that for l≥6 the algorithm
produces almost identical results. Reliable results for large alphabet
sizes K are more difficult to obtain because for higher K the value of
the entropy rate h is also high. Therefore, much longer signals are
required. This explains the somewhat increased values of Cµ for K=5
in Table B.1.

Varying the sampling intervals in converting the velocity signal to
discrete times did not lead to any change in the results. The effect of
various partitionings of the continuous space has been checked by
applying non-symmetric (same as symmetric but shifted along the x
and y axes) partitions. In all cases this resulted in lower values of Cµ.
Any variants of centrally symmetric partitioning produced identical
results, and such partition was used in all subsequent calculations.

The influence of particular MD models and the parameters of the
numerical methods on the phenomenon were insignificant. They are
as follows.

Table B. 1
Statistical Complexity Cµ vs. the length of histories l (total signal length is 30 ns, K=3)
and the alphabet size K (similar signal, l=9) for bulk water hydrogen velocity signal

l Cµ K Cµ

2 3.17 2 5.22
3 4.75 3 7.95
4 6.11 4 8.23
5 7.31 5 8.68
6 7.95
7 8.15
8 8.21
9 8.29
10 8.37

– Both Nose-Hoover and Berendsen thermostats produced almost
identical results in Cµ with the same log2-like behaviour. Varying
the coupling constant of the Berendsen thermostat by two orders
of magnitude did not change the results.

– An SPC-E water model produced slightly higher values of Cµ than
SPC while keeping the same overall behaviour of the curves
unchanged.

– Systems containing 392 and 878 water molecules resulted in the
same values of the complexity parameters.

– Varying the position of the Poincare section plane along the z axes
did not lead to any change in the results. The same behaviour with
the number of data points was obtained, except that the time
between the data points was larger for obvious reasons.

– Finally, different values of the second adjustable parameter of the
CSSR algorithm, the significance level for the χ-squared signifi-
cance test, 0.001, 0.01, and 0.1, reproduced the same qualitative
behaviour of Cµ.

Appendix C. Converting molecular trajectory into
symbolic sequence

C.1. Discretisation

Without any loss of dynamical information, an n-dimensional
trajectory of a dynamical system can be converted to an (n−1)-
dimensional map using the Poincare section. At the locations where
the trajectory pierces the Poincare section surface the points of the
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map are generated, thus sampling the continuous signal at discrete
timemoments. However, the dynamics of the map is equivalent to the
original signal only if the full-dimensional phase space trajectory is
considered. For molecular signals when the 3-dimensional configura-
tion (or velocity) trajectory of one atom (or higher dimensional for a
group of atoms) is analysed the Poincare map is undefined. However, a
similar approach can be used to naturally sample the roughly periodic
signal of molecular systems.

To discretise the three-dimensional velocity trajectories of indivi-
dual atoms of the molecular systemwe used its intersections with the
xy plane. For hydrogen water atoms, for example, the average time
interval between the intersections was equal to 0.032 ps. Very
conveniently it roughly corresponds to the first minimum on the
autocorrelation function, obeying the general rule for time sampling
of signals. The resulting two-dimensional points approximately
uniformly cover the area and form a centrally symmetric distribution
of points, Fig. C.1.

C.2. Symbolisation

In order to convert the trajectory map into a sequence of symbols
from a finite alphabet, an appropriate partitioning of the continuous
space is required. A natural choice for such partitioning is the
generating partition (GP) [22] that has the property of a one-to-one
correspondence between the continuous trajectory and the generated
symbolic sequence. That is, all information is retained after the
symbolisation.

Consider a dynamical system xi+1= f(xi), f: M→M and a finite
collection of disjoint open sets {Bk}k =1K , partition elements, such that
for their closures M=∪k =1

K B̄k. Given an initial condition x0, the
trajectory {xi}ni=−n defines a sequence of visited partition elements
{Bxi

}ni=−n or, {Ai}ni =−nwhere Ai are symbols from the alphabet that mark
the elements where xiϵBi. For a generating partition the intersection of
all images and pre-images of these elements is, in the limit n→∞, a
single point: ∩n

i =−nf(− i)(Bxi
).

This elegant mathematical construct has two disadvantages when
applied to realistic molecular signals. First, an algorithm for calculat-
ing a GP in a general case is unknown. Second, it is shown for simple
tent maps [23] that the values of statistical complexity for different
GPs of the same system are different (a system can havemany GPs, not
to confuse with the uniqueness of a symbolic representation of a
trajectory for a given GP).

Recently methods for finding approximations for GP are reported.
The method from [24] is shown to reproduce GP for known systems
and can treat multi-dimensional observed time-series data. The
results of the application of this method to our velocity data using 2,
3, 4, and 5 partitions are shown in Fig. C.1. For all cases the resulting
approximations to GP are centrally symmetric (probably, because of
the central symmetry of the data points distribution). Thus, for our
signals we used centrally symmetric partitions in all subsequent
calculations.

Summarising, in converting the three-dimensional molecular
trajectories into symbolic sequences we, first, built a two-dimensional
map by finding the intersections of the trajectory with the xy plane
and, second, assigned a symbol to each point of the map depending to
what segment of the partition the point belongs.

Fig. C.1. Approximations for generating partitions obtained using the method by Buhl
and Kennel [24] for the discretised hydrogen velocity for 2, 3, 4, and 5 partitions.
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