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MD simulated classical trajectories of liquid water are considered from the chaotic dynamics point of view. By applying a sophisticated statistical
procedure, called ‘causal states’ reconstruction, we decompose the dynamical phase space into non-overlapping elementary areas of two qualitatively
different classes, characterised by the decay law for Poincare recurrence times. By an analogy with the Standard map they can be attributed to ‘chaotic
sea’ and quasiperiodic motions in the vicinity of (‘sticky’) periodic islands. The proposed method of identifying the areas with sticky dynamics in
the high-dimensional phase space has far reaching implications in understanding the molecular transport, including the anomalous diffusion process.
It is important, for example, for elucidating general regularities underlying the complex motions of protein atoms in the process of folding or other
self-organising biomolecular dynamics.

Motivation
The trajectories of atoms and molecules in liquids can be
described by Newtonian ordinary differential equations of
motion. Therefore, any complex patterns formed by the
molecules due to their mutual interactions have geomet-
ric counterparts in the phase space defined by their co-
ordinates and velocities. The problem of identifying and
classifying the patterns as well as predicting their appear-
ance is crucially important since they ultimately define the
functionality of the systems. However, a profound difficulty
in the dynamical picture of molecular systems is its high-
dimensionality. Commonly used approaches from non-linear
dynamics, such as Lyapunov exponents, dimensions, and en-
tropies fail in most cases for the dimensionality higher than
≈10.
One of the most difficult problems in the analysis of the
high-dimensional molecular trajectories is the definition of
the notion of ‘structure’ or ‘cluster’ in the phase space. We
address this issue in a broad statistical sense considering
deviations from the uniform phase space filling by a typi-
cal trajectory as clusters. The presence of structures in the
phase space of dynamical systems can be interpreted as the
existence of nonuniformities in the invariant measure [J.-P.
Eckmann and D. Ruelle. Rev. Mod. Phys., 57:617–656,
1985]. The latter defines the probabilities of visiting vari-
ous parts of the phase space by trajectories. The clusters
appear in the phase space due to the presence of abundant
resonances that arise as a result of nonlinear interactions be-
tween atoms. The borders of resonant areas are known to be
‘sticky’ in a sense that any trajectory spends a long time in
their vicinity. This is in contrast to other, non-resonant ar-
eas, where the trajectories evolve randomly filling the phase
space almost uniformly.
A quantitative description of the nonuniformity of the phase
space covering by the trajectories can be achieved via the
Poincare recurrence theory. Consider a small element ∆Γ
of the phase space Γ of a Hamiltonian system located
around the point x. A trajectory wanders in the chaotic
area visiting the element ∆Γ from time to time (recur-
ring to it). Denoting the time between successive recur-
rences as τ the probability distribution function of recur-
rence times P (∆Γ,x, τ ) can be introduced that depends
on the phase volume and the position of the element ∆Γ,
as well as the value of τ itself. If the motion is er-
godic the dependence of τ on the coordinates x becomes
inessential and one can introduce the distribution function
P (τ ) = lim∆Γ→0P (∆Γ, τ )/∆Γ. For a typical chaotic tra-
jectory the following asymptotic relation holds

P (τ ) =
1

〈τ〉
exp(−τ/〈τ〉), (1)

where 〈τ〉 is the average recurrence time over the distri-
bution P (τ ). Eq. (1) can be used, in principle, for distin-
guishing areas with chaotic motion from those close to sticky
areas by introducing a partition of the phase space into non-
overlapping volumes and analyzing the distributions P (τ )
for each of them.
It is not clear how to create a partition in the phase space.
We suggest a way of define a ‘natural’ partitioning that can
identify different dynamics by comparing the decay times of
Poincare recurrences to the defined areas.

Methodology
Molecular Dynamics simulation details
In this work, bulk water (periodic boundary conditions) con-
sisting of 392 or 878 SPC or SPC-E molecules was simulated
using the GROMACS molecular dynamics package. The
temperature of the systems was kept constant at 300K using
Berendsen or Nose-Hoover thermostats whose combination
with various coupling constants was investigated. A suffi-
cient equilibration was performed before collecting data for
analysis. The velocity of the hydrogen atom of one of the
water molecules was used. At the locations where the veloc-
ity pierces the xy plane the points of a two-dimensional map
were generated and used as the original continuous signal
for analysis.
We have found that the results do not depend on the pa-
rameters of molecular simulations such as the forcefield, the
temperature, the type of the thermostat, the number of
molecules, etc.
Defining the partition of the phase space
For an initial approximation to the phase space partition, we
have chosen a symmetrical partition in one of the projections
of an atom’s velocity. The example of calculations with this
method for the two-dimensional cross-section of our (three-
dimensional) velocity data using 2, 3, 4, and 5 partition
elements are shown in Fig. 1. The simulated trajectory
of 1µs long resulted in approximately 3 · 107 data points
(symbols).

Figure 1: Symbolising MD trajectory

The methodology for finding the required phase
space partition is ‘Computational Mechanics’ (CM) de-
veloped by Crutchfield et al [J. P. Crutchfield and K. Young.
Phys. Rev. Lett., 63(2):105–108, July 1989]. CM builds
a statistic on infinitely long histories (‘pasts’) of sym-
bols si representing the state of the system at times ti,
←−s i ≡ {. . . si−2si−1si}, by analysing the ‘futures’ −→s i ≡
{si+1si+2 . . .} following each past. The algorithm groups
the pasts into classes called ‘causal states’ εj. The criterion
of grouping is the equivalence of the probabilities of the fu-
tures, that is two pasts←−s i and

←−s j are assigned to the same
causal state if the distributions of their futures are the same:
P (−→s |←−s i) = P (−→s |←−s j), where P (X|Y ) is the probability
of X given Y .
We have previously shown that the resulting causal states
define a special kind of the phase space partitioning. The
partitioning provides the maximal extraction of non-random
information from the trajectory of the system.

Results
We compare our results on water to a well documented two-
dimensional area preserving system known as the Standard
map [B. V. Chirikov. Phys. Rep., 52:264–379, 1979]. We
used a regime when a large chaotic area contains two sta-
bility islands.
For both the water and the Standard map data the causal
states demonstrate a clear separation into two classes that
we call ‘periodic’ states (those defined by Poincare recur-
rence times decaying much slower compared to Eq. (1)) and
‘chaotic’ ones. To quantify the difference between the classes
we introduce a dimensionless parameterD, equal to the dis-
crepancy between the decay exponent λ calculated from the
histogram of recurrence times and its ‘normal’ value 1

〈τ〉 de-

fined by the Eq. (1)

D =
1

λ〈τ〉
− 1, (2)

where λ is the exponent defining the shape of the distribu-
tion function

P (τ ) ∝ exp(−λτ ) (3)

found numerically. Large D values indicate strong discrep-
ancy between the calculated value of the exponent in Eq.
(3) and the expected value of 1/〈τ〉.
The ‘abnormal’ tail in the distribution of the recurrence
times can be clearly visualised for the case of the Standard
map (Fig. 2a). In the case of water time series there is no
apparent distinction between the two types of behaviour as
it is shown in Fig. 2b. In the simplest approximation, this
could be interpreted as the absence of periodic islands in the
phase space of water because of the breaking of all invariant
tori that occurs due to interaction between resonances in
the multiple degrees of freedom system.

Figure 2: Distribution of Poincare return times
for a) Standard map; b) water.

In Fig. 3 we plot the scatter diagrams representing the
apparent clustering of the causal states into two classes with
respect to the parameter D as a function of the probability
P (εi) of the causal states.

Figure 3: ‘Periodic’ (diamonds) and ‘chaotic’
states for (a) water, (b) Standard map.

Conclusions
The two classes of ‘periodic’ and ‘chaotic’ states are present in the dynamics of both water and the Standard map. The ‘chaotic’ states
represent long term mixing processes that describe the way the system explores the phase space. The number of ‘chaotic’ states is
high indicating the prevalence of the areas of chaotic motions (chaotic sea) over the periodic components (resonance islands), a rather
typical picture previously reported only for low-dimensional dynamical systems [G.M. Zaslavsky. Phys. Repts, 371:461–580, 2001].


