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Abstract 

Deterministic chaos in systems with multiple degrees of freedom like, e.g., an ensemble of 
water molecules, appears indistinguishable from noise by any standard statistical method. At 
the same time, the time evolution of trajectories in the phase space is described by 
deterministic differential equations; hence the signatures of deterministic Hamiltonian 
dynamics are contained in the time dependent coordinates and momenta of each atom. In this 
paper, we analyze scalar time series originating from a numerical simulation of a large 
ensemble of water molecules with the purpose of finding a way of distinguishing it from a 
purely stochastic signal. We consider information theory as a bridge between deterministic 
chaos in nonlinear dynamical systems with few degrees of freedom and apparently random 
trajectories in a high-dimensional phase space. Our analysis of statistical complexity of the 
experimental time series in terms of Markov chain theory with memory allows making a 
quantitative distinction between high-dimensional deterministic motion and random noise. 
The approach is based on the construction of  -machine that decomposes the phase space 
into non-overlapping elementary areas, which, depending on their decay laws for Poincare 
recurrence times, can be further divided between two qualitatively different classes. By an 
analogy with Standard map, they can be attributed to the chaotic sea and quasiperiodic 
motions in the vicinity of sticky dynamic traps. The proposed method is thus based on 
identifying areas with sticky dynamics in a high-dimensional phase space that has far 
reaching implications in understanding the molecular transport, including the anomalous 
diffusion process.  

 

1. Introduction 
 

Newtonian equations of motion describe the trajectories of atoms and molecules in liquids.  
Therefore, the dynamics of any particle is deterministic and most probably chaotic [1] 
characterized by positive value of the largest Lyapunov exponent. On the other hand, it is 
known that snapshots of molecular liquids obtained either in numerical simulations or real 
experiments often demonstrate highly structured behavior, i.e. atoms form patterns like, e.g. 
famous tetrahedral conformation of clusters in bulk water. The immediate problem thus 
appears on the description of such patterns in terms of deterministically chaotic dynamics of 
particles, i.e. finding geometric counterparts of molecular patterns in the phase space, the 
space defined by all the coordinates and velocities of all the particles in the analyzed 
molecular ensemble. The problem of describing and predicting the appearance of such 
patterns is crucially important since they ultimately define the functionality of the molecular 
systems and dynamics of such processes as, for example, protein folding. There is, however, a 
fundamental difficulty in the dynamical picture of molecular systems due to high-



dimensionality of the corresponding phase space. Commonly used approaches from non-
linear dynamics [2], such as Lyapunov exponents, dimensions, and entropies fail if the 
motions occur in the phase space of dimension higher than ~10. Therefore, new conceptually 
different methodologies have to be developed for such intrinsically high-dimensional systems. 

One of the most difficult problems in the analysis of the high-dimensional molecular 
trajectories is the very definition of the notion of "cluster" in the phase space. We address this 
issue in a broad statistical sense considering deviations from the uniform phase space filling 
by a typical trajectory as clusters. The clusters appear in the phase space due to the presence 
of abundant resonances that arise as a result of nonlinear interactions between atoms. The 
borders of resonant areas are known to be "sticky" in a sense that any trajectory spends a long 
time in their vicinity in contrast to other, non-resonant areas where trajectories move 
randomly filling the phase space almost uniformly. 

 

2. Symbolic dynamics 
 

We analyze the trajectories of computer simulated bulk water at room temperature sampled 
at discrete time moments. Strictly speaking, we analyze the motion of one of the hydrogen 
atoms of a randomly selected molecule in the ensemble of 392 water molecules. In the case of 
normal diffusion, displacement of the atom along any of Cartesian coordinates is well 
approximated by a by a random walk model.  

In order to avoid the influence of short time correlations caused by rotations of hydrogen 
atom around the axis along hydrogen bond we down-sample the initially three-dimensional 
trajectory by introducing a two-dimensional cross-section (Fig.1). This procedure 
approximately corresponds to sampling the data at a rate defined by the first minimum of the 
autocorrelation function, a value widely used in analyses of nonlinear dynamics. It further 
appears convenient to replace the real-valued signal with symbolic string obtained by using a 
few-symbol alphabet, for example, the three symbol one that we used in our studies {0; 1; 2}. 
Symbolizing the trajectory corresponds to introducing a partition of the phase space into non-
overlapping areas, where each element of the partition corresponds to a symbolic sub-
sequence (word). Considering symbolic words of finite length, we obtain the reconstruction of 
high-dimensional dynamics from the analysis of a scalar time series, similar to the procedure 
based on Takens embedding theorem [3].  
 

 
Fig. 1: Symbolization of 3-d velocity time series. From velocity (upper left) to the points on 
the cross section plane (lower left), and to symbolization with different alphabets containing 
from 2 to 5 symbols (right). 
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Fig. 3. Clustering of causal states for the 
hydrogen atom velocity time series (a) and 
the Standard map (b) into ‘periodic’ 
(diamonds) and ‘chaotic’ (triangles) classes. 
Parameter D is plotted vs. occurrence rates of 
the causal states. 
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Fig.2. Partitions caused by considering symbolic words of different length in the case of the 

Standard map. Words partition the phase space into n3  non-overlapping segments, where n is 
the word length. Cases of n=1,2,3,4 are shown from left to right. 
 

3. Poincare recurrence 

 
Quantitative description of the non-

uniformity of the phase space can be achieved 
via the Poincare recurrence theory [4]. 
Consider a small element   of the phase 
space   of a Hamiltonian system located 
around the point x. A trajectory wanders in 
the chaotic area visiting the element   from 
time to time (recurring to it). Denoting the 
time between successive recurrences as  , 
the probability distribution function of 
recurrence times  ,, xP   can be 
introduced. If the motion is ergodic the 
dependence of  on the coordinates x 
becomes inessential and one can introduce the 
distribution function 

       ,lim 0 PP  (1) 

For a typical chaotic trajectory the following 
asymptotic relation can be expected to hold 

      expP  (2) 

where   is the average recurrence time 

over the distribution  P . Eq. (2) then can 
be used for distinguishing areas with chaotic 
motion from those close to sticky areas by 
introducing a partition of the phase space into 
non-overlapping volumes and analyzing the 
distributions  P  for each of them. Note 
also, that the problem of choice of the sizes 
and shapes of the partition elements is not 
trivial one and, in the general case the 
distribution of the Poincare recurrence times, 
can depend on the location and shape of the 
area  . 



3.  -machine: a Markov chain with memory 

 
We use Computational Mechanics, a promising new concept aimed at building a statistical 

and at the same time dynamical description of time series. It combines a well developed 
theory of Markov chains, with the concept of short-time predictability, characteristic to 
dynamical systems. As a result a model called  -machine is built  that provides a ‘natural’ 
partitioning in the phase space by means of causal states (groups of symbolic words). Every 
causal state can be considered as an element of the phase space that contains a set of Poincare 
cycles distributed in accordance with Eq. (2). 

Moreover, considering the deviations from Eq. (2) allows identification of the two types of 
motion in the phase space, periodic and chaotic, i.e. separating the causal states with special 
properties that correspond to the resonance areas within chaotic sea in the phase space. Here 
we introduce a dimensionless parameter   11 D ,where   is the exponent defining 

the shape of the distribution function      expP  found numerically, p , where p  

is the occurrence of the given causal state. Parameter D is calculated for each of the causal 
states, and it equals to the normalized discrepancy between the decay exponent   calculated 
from the histogram of recurrence times and its ‘normal’ value 1  defined by the Eq. (2). 

Large D values indicate strong discrepancy between the calculated value of the exponent   
and its expected value 1 . 

In Fig. 3 we plot the scatter diagrams representing the apparent clustering of the causal 
states into two classes with respect to the parameter D. The horizontal axis approximates the 
occurrence rate of the causal states. Every point in Fig.3 corresponds to a causal state. 

The apparent clustering of points in Fig.3 evidences the presence of the areas in the phase 
space where the trajectory spends longer time compared to the rest of the accessible volume. 
Such areas can not be detected easily by other methods, most probably due to abundance of 
resonant areas in the high-dimensional phase space that makes difficult a clear distinction 
between chaotic and quasi-periodic motions. 

From a different perspective, our method has a special importance for the problem of 
quantifying transport properties in high-dimensional molecular systems, since it reveals a 
(small) number of areas in the phase space playing crucial importance for particle motion. 
Finding such areas from the analysis of a scalar time series can be very useful in interpreting 
numerical experiments with large number of interacting particles that typically generate huge 
volumes of data. Extracting the essential information from the trajectory of a single test 
particle thus looks a promising approach, for example, in modeling the process of protein 
folding or dynamics of complex bio-molecules. 
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