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A multiscale Molecular Dynamics / Hydrodynamics method is developed for simultaneous modelling liquid systems at atomistic and fluctuating hydrody-
namics levels. The method is implemented for a 2D Mercedes Benz (MB or BN2D) water model. The concept and the governing equations of multiscale
coupling together with the results of successful implementation are reported. It is demonstrated that the standard deviations of velocity fluctuations, the
radial distribution of molecules, and their velocity autocorrelation functions are consistent with the structure and dynamics of the liquid at the limits of
pure Molecular Dynamics and pure hydrodynamics descriptions and at all intermediate values of the coupled implementation.

Motivation
In molecular modelling the focus is increasingly shifting to-
wards large molecular systems such as biological macro-
molecules, the aggregates of molecules (for example various
kinds of membranes, including biological), or even entire
living cell organelles with all their molecular complexities
(the so called ‘crowded’ biomolecular systems). Necessarily
approximations have to be used to make large scale rep-
resentation of the system computationally feasible. These
include various coarse graining techniques, continuum mod-
elling, combinations of the two, and other approaches.
In the hydrodynamic limit the number of particles in atom-
istic molecular dynamics simulations makes critical differ-
ence in terms of computational efforts. Here 2D models can
offer a reasonable compromise between the accuracy and the
computationally efficiency. For water the 2D Mercedes Benz
(MB) model reproduces many important aspects of experi-
mentally observed behaviour, while it is significantly faster
in comparison with high-fidelity 3D water models such as
TIP4P.

Methodology
Following the standard approach in two-phase modelling,
we consider a mixture of two completely miscible liquids
in the system. One phase corresponds to the Lagrangian
phase (MD particles) and the other is the Eulerian phase
(FH continuum).
Coupling between the phases is introduced by allowing the
exchange of mass and momentum between the phases. The
parameter that quantifies the distribution of mass and mo-
mentum between the phases is denoted as s and mathemat-
ically it is represented by a smoothly changing function of
space (and possibly time) describing the concentration of
each phase. The value of s varies from 0 to 1, for example,
in the centre of the system we could have mostly MD de-
scription (s ≈ 0) and on the edges it is mostly FH (s ≈ 1).
We use the following definitions. The MD phase is described
by particles, the properties of which (density and velocity)
are calculated as averages over the cell on the regular grid,
and forms an MD ‘liquid’ with the density

∑
p ρp and mo-

mentum
∑

p ρpuip, where ρp =
mp

V , uip are the MD particle’s
density and velocity of the ith spatial component respec-
tively, mp is the particle’s mass, and V is the cell volume.
The Eulerian phase (FH), that corresponds to the cell av-
erages on the regular grid, forms the FH ‘liquid’ with the
density ρ and the momentum ρui, one value of each per grid
cell.
The mixture of these two liquids has the density

ρ̃ = sρ + (1− s)
∑
p

ρp

and the momentum

ũjρ̃ = sujρ + (1− s)
∑
p

ρpujp.

We require mass and momentum conservation of the mix-
ture of FH and MD ‘liquids’ at all concentration values s.

Mass conservation
The conservation laws of mass of each phase are given by:
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∂t
sρ +

∂

∂xi
ũisρ = Jρ,
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∂t
(1− s)

∑
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ρp +
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∂xi
(1− s)

∑
p

uipρp = −Jρ,

where Jρ is a sink/source that transfers mass between the
phases.
Momentum conservation
The FH phase is modelled using a generalisation of the de-
terministic Navier-Stokes equations for microscopic flows,
Landau Lifshitz - Fluctuating Hydrodynamics equations
(LL-FH), that account for fluctuating stochastic sources
originating from microscopic molecular motion.
The momentum conservation equation for the FH ‘liquid’
can be written as

∂

∂t
sρuj +

∂

∂xi
ũiujsρ = sFj + Ju

and for the MD ‘liquid’ it is
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= (1− s)
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where Ju is the momentum exchange rate,

Fj = ∇j

(
Πij + Π̃ij

)
,

Fj is the hydrodynamic force, and Fjp is the intermolecular
force that acts on each particle in the MD ‘liquid’.
The deterministic hydrodynamic stress tensor is calculated
as

Πij = − (P − ξ∇ · u⃗) δij+
+η

(
∂iuj + ∂jui − 2D−1∇u⃗ · δij

)
,

where ξ and η are shear and bulk viscosities, D is the di-
mensionality of the system, P is pressure.
The stochastic stress tensor is calculated as

Π̃ij =

√
2kBT

δtδV
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2
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D
√
ξ
tr[G]

D
Eij

)
,

where kB is the Boltzmann constant, δV is the cell volume,
δt is the time scale (equal to the time step in numerical im-
plementations), T is temperature, G is the Gaussian matrix,

and Gs
ij =

Gij+G
T
ij

2 − tr[G]
D Eij, where tr[G] is the trace.

Implementation
In order to maintain the conservation of mass we introduce
the following dynamical law:
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 ,
controlled by a parameter α > 0, where D

Dt0
= ∂

∂t · +
∂
∂xi

ũi·.
This drives the deviation of the average density ρ̃ to the
correct value

∑
p ρp within the zone where 0 < s < 1 and

equals zero at the limits s = 0 and s = 1.

Using similar approach for momentum conservation leads to
the following modified equations of motion for the atoms:
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where N(t) is the number of particles in the cell.
For the FH liquid the following conservation equation is
used:
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Mercedes-Benz water model
Molecules interact pairwise through the Lennard-Jones term
and an explicit hydrogen bounding term (which depends on
the respective orientation of the arms).
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The total potential is

Φ = ΦLJ + ΦHB,

where the Lennard-Jonnes potential ΦLJ

ΦLJ =
N∑
ij

4 ϵLJ

(σLJ
rij

)12

−
(
σLJ
rij

)6
 ,

and ΦHB is the explicit hydrogen bonding term defined as

ΦHB =
N∑
ij

ϵHB ·G [(rij − rHB), σr]×

×
3∑

k,l=1

G
[
(⃗ik · u⃗ij − 1), σϕ

]
G
[
(⃗jl · u⃗ij + 1), σϕ

]
,

where G is the Gaussian function

G [(x), σ] = e
−x2

2σ2 .

Results
The fluctuations of the velocities and densities of hydrodynamics and atomistic phases can be smoothly enforced on each other, thus constituting the
macro- and micro- scale coupling. The structural properties, the radial distribution function for MB particles, are not affected by the coupling.
We are currently implementing the proposed coupling method for 3D systems, including common water models, such as TIP3P, TIP4P, etc., with
biomolecules. We also plan to simulate large systems using the described 2D model for detailed analysis of various hydrodynamic processes, such as flows
in microfluidic devices or water flows around large biomolecular aggregates.


