

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation Momentum conservation

Results

Conclusions

Mercedes-Benz water

The forcefield

Structure

Dynamics

Dynamical order The system

Excess entropy

Conclusions

Acknowledgement

Molecular dynamics/hydrodynamics hybrid description of liquids and biomolecular solutions

Dmitry Nerukh, Arturs Scukins, Evgen Pavlov, Vladimir Ryabov, Sergey Karabasov, Anton Markesteijn

> Aston University Future University Hakodate Queen Mary University of London Cambridge University

EMLG 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Aston University

Introduction

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

- Introduction The background The model Mass conservation Momentum conservation Results
- Conclusions
- Mercedes-Benz water
- The forcefield Thermodynamics Structure Dynamics
- Dynamical order The system Excess entropy
- Conclusions
- Acknowledgement

The talk's plan:

- I. Hybrid MD/HD framework
- II. Mercedes-Benz water
- III. Long-range order in water dynamics and its reduction by a peptide solute

Sac

Hybrid MD/HD: motivation

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction

- The backgrou The model Mass conservation Momentum conservation Results
- Conclusions
- Mercedes-Benz water
- The forcefield Thermodynamics Structure
- Dynamical order The system Excess entropy Conclusions
- Acknowledgement

Motivation: true *multiscaling*

Hybrid MD/HD: hydrodynamics

hybrid MD/HD modelling

Introduction

- Hybrid MD/HD
- Introduction The background
- The model Mass conservation Momentum conservation
- Conclusions
- Mercedes-Benz water
- The forcefield Thermodynamics Structure
- Dynamics
- Dynamical order The system Excess entropy Conclusions
- Acknowledgement

Continuous representation (hydrodynamics)

- All started with macroscopic thermodynamical quantities: the properties of the system **as a whole**, the largest possible scale.
- Describing the system at smaller scales: the properties become **fields** changing in **time**:

 $\rho(\mathbf{x},t), \mathbf{u}(\mathbf{x},t), T(\mathbf{x},t).$

うつん 川 エー・エー・ エー・シック

- ${\bf x}$ is the Euclidean 3D space.
- The equations of motion are the HD equations.
- The solution is the values of the fields at each location in space at every instant of time: $\rho(\mathbf{x}, t), \mathbf{u}(\mathbf{x}, t), T(\mathbf{x}, t)$.

Hybrid MD/HD: atomistic

hybrid MD/HD modelling

The background

The forcefield

Excess entropy

Atomistic representation

- The variables are the positions and momenta of the point masses, the atoms:

$$\{\mathbf{q}_1,\ldots,\mathbf{q}_N,\mathbf{p}_1,\ldots,\mathbf{p}_N\}$$

- The space is the $6N\mbox{-dimensional}$ phase space.
- The atoms interact through empirically (in MD) defined Hamiltonian $H({\bf q},{\bf p})$
- The equations of motion describing $\mathbf{q}(t),\mathbf{p}(t)$ are the Hamilton equations

$$\frac{\mathrm{d}q_i(t)}{\mathrm{d}t} = \frac{\partial H(\mathbf{q},\mathbf{p})}{\partial p_i}, \frac{\mathrm{d}p_i(t)}{\mathrm{d}t} = -\frac{\partial H(\mathbf{q},\mathbf{p})}{\partial q_i}$$

- The solution is the molecular trajectory: the values of the coordinates and momenta at every moment of time:

$$\mathbf{q}(t), \mathbf{p}(t).$$

900

Connecting the representations

hybrid MD/HD modelling

Introduction

- Hybrid MD/HD
- Introduction The backgroun

The model

- Mass conservation Momentum conservation Results
- Conclusions
- Mercedes-Benz water
- The forcefield Thermodynamics Structure
- Dynamics
- Dynamical order The system Excess entropy
- Acknowledgement

- The end domains HD and MD are described by purely hydrodynamic and purely Newtonian equations of motion respectively.
- In the hybrid domain the fluid consists of two "phases":
 - HD phase is a continuum water with volume fraction $s = \frac{V_1}{V}$,
 - MD phase is a phase that incorporates atoms, its volume fraction is (1 s).
- The parameter s = s(x) is the function of space coordinates (and, generally, time), such that s = 1 in the HD domain, s = 0 in the MD domain.

Mass conservation

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun

The model

Mass conservation

Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure Dynamics

Dynamical order The system Excess entropy Conclusions

Acknowledgement

For HD phase:

$$\frac{\partial}{\partial t}\left(s\rho\right) + \frac{\partial}{\partial x_{i}}\left(u_{i}s\rho\right) = J,$$

1

For MD phase:

1

$$\frac{\partial}{\partial t} \left((1-s) \sum_{p=1,N(t)} \rho_p \right) + \frac{\partial}{\partial x_i} \left((1-s) \sum_{p=1,N(t)} \rho_p u_{ip} \right) = -J,$$

where $\rho_p = m_p/V$ is the density of MD particles and J is the birth/death rate due to the coupling between the phases.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへ⊙

Modified MD equations

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The background

Mass conservation

Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure Dynamics

Dynamical order

The system

Excess entropy

Conclusions

Acknowledgement

MD velocities are constrained to HD phase in the $s \rightarrow 1$ limit:

$$\frac{dx_{ip}}{dt} = u_{ip} + s(u_i - u_{ip}) + s(1 - s)\alpha \frac{\partial}{\partial x_i} \left(\tilde{\rho} - \sum_{p=1,N(t)} \rho_p \right) / \rho_p / N(t),$$

イロト イヨト イヨト

3

Dac

where $\tilde{\rho} = s\rho + (1-s)\sum_{p=1,N(t)}\rho_p$.

The source J

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgrour

The model

Mass conservation

Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure

Dynamical order The system Excess entropy Conclusions

Acknowledgement

From the modified MD the source J can be found:

$$J = s \frac{\partial}{\partial t} \sum_{p=1,N(t)} \rho_p + \frac{\partial}{\partial x_i} \left(su_i \sum_{p=1,N(t)} \rho_p \right) + \frac{\partial}{\partial x_i} \left(s(1-s)\alpha \frac{\partial}{\partial x_i} \left(\tilde{\rho} - \sum_{p=1,N(t)} \rho_p \right) \right),$$

where
$$\tilde{\rho} = s\rho + (1-s)\sum_{p=1,N(t)}\rho_p$$

 $\tilde{\rho}$ is diffused towards $\sum_{p=1,N(t)} \rho_p$:

$$\frac{D}{Dt}\left(\tilde{\rho} - \sum_{p=1,N(t)} \rho_p\right) = \frac{\partial}{\partial x_i} \left(s(1-s)\alpha \frac{\partial}{\partial x_i} \left(\tilde{\rho} - \sum_{p=1,N(t)} \rho_p\right)\right).$$

Conservation of momentum

For HD phase:

hybrid MD/HD modelling

Introduction

Hybrid MD/HD Introduction The backgroun The model Mass conservation

Momentum conservation

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure Dynamics

Dynamical order The system Excess entropy Conclusions

Acknowledgement

 $\frac{\partial}{\partial t}\left(su_{i}\rho\right) + \frac{\partial}{\partial x_{i}}\left(u_{j}u_{i}s\rho\right) = sF_{i} + J_{2},$

where J_2 is the HD-MD interaction force and F_i is the hydrodynamic force, calculated from Landau-Lifshitz fluctuating hydrodynamics model:

$$F_{i} = -\frac{\partial T_{ij}^{FH}}{\partial x_{i}}$$

$$T_{ij}^{FH} = T_{ij} + \tilde{T}_{ij}$$

$$T_{ij} = \left(p - \xi \frac{\partial}{\partial x_{\alpha}} u_{\alpha}\right) \delta_{ij} - \nu \left(\frac{\partial}{\partial x_{i}} u_{j} + \frac{\partial}{\partial x_{j}} u_{i} - 2D^{-1} \frac{\partial}{\partial x_{\alpha}} u_{\alpha} \delta_{ij}\right)$$

where D is the problem dimension, p is pressure, ξ , ν are the (macro) viscosity coefficients, \tilde{T}_{ij} is a random Gaussian matrix with zero mean and correlations depending on the viscosities and k_BT .

Conservation of momentum

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation

Momentum conservation Results

Results

Conclusions

Mercedes-Benz water

The forcefield

Thermodynami

Structure

Dynamics

Dynamical order

The system

Excess entropy

Conclusions

Acknowledgement

For MD phase:

$$\frac{\partial}{\partial t} \left((1-s) \sum_{p=1,N(t)} u_{i,p} \rho_p \right) + \frac{\partial}{\partial x_j} \left((1-s) \sum_{p=1,N(t)} \rho_p u_{i,p} u_{j,p} \right)$$
$$= (1-s) \sum_{p=1,N(t)} F_{i,p} - J_2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modified MD equation for the force

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation

Momentum conservation

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure

Dynamical order The system Excess entropy Conclusions

Acknowledgement

Similarly to the modified equation for MD velocities:

$$\begin{split} \frac{du_{jp}}{dt} &= (1-s)F_{jp}/\rho_p + sF_j/\rho_p/N(t) \\ &+ \frac{\partial}{\partial x_i} \left(s(1-s)\alpha \sum_{p=1,N(t)} u_{jp}/N(t) \frac{\partial}{\partial x_i} \left(\tilde{\rho} - \sum_{p=1,N(t)} \rho_p \right) \right) \frac{1}{\rho_p N} \\ &- \frac{\partial}{\partial x_i} \left(s(1-s)\beta \frac{\partial}{\partial x_i} \left(\tilde{u}_j \tilde{\rho} - \sum_{p=1,N(t)} u_{jp} \rho_p \right) \right) / \rho_p/N(t), \end{split}$$

where
$$\tilde{\rho} = s\rho + (1-s)\sum_{p=1,N(t)}\rho_p$$
,
 $\tilde{u}_j = \left[s\rho u_j + (1-s)\sum_{p=1,N(t)}\rho_p u_{jp}\right]/\tilde{\rho}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Aston University

The source J_2

hybrid MD/HD modelling

Introduction

Hybrid MD/HD Introduction The background

The model Mass conservatio

Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure

Dynamics

Dynamical order The system

Excess entropy

Conclusions

Acknowledgement

$$J_{2} = s \frac{\partial}{\partial t} \sum_{p=1,N(t)} \rho_{p} u_{jp} + \frac{\partial}{\partial x_{i}} \left(su_{i} \sum_{p=1,N(t)} \rho_{p} u_{jp} \right) - sF_{j} + \frac{\partial}{\partial x_{i}} \left(s(1-s)\beta \frac{\partial}{\partial x_{i}} \left(\tilde{u}_{j} \tilde{\rho} - \sum_{p=1,N(t)} u_{jp} \rho_{p} \right) \right),$$

where
$$\tilde{\rho} = s\rho + (1-s)\sum_{p=1,N(t)} \rho_p,$$

 $\tilde{u}_j = \left[s\rho u_j + (1-s)\sum_{p=1,N(t)} \rho_p u_{jp}\right]/\tilde{\rho}.$
 $\tilde{u}_j\tilde{\rho}$ is diffused towards $\sum_{p=1,N(t)} u_{jp}\rho_p$:

$$\frac{D}{Dt} \left(\tilde{u}_j \tilde{\rho} - \sum_{p=1,N(t)} u_{jp} \rho_p \right) = \frac{\partial}{\partial x_i} \left(s(1-s) \beta \frac{\partial}{\partial x_i} \left(\tilde{u}_j \tilde{\rho} - \sum_{\substack{p=1,N(t)\\ + \Box > i < \overline{\Box} > i < \overline{\Box} > i < \overline{\Xi} > i < \overline{\Xi} > i < \overline{\Xi} < \overline{\Box} < \overline{\Box} < \overline{\Box} > i < \overline{\Xi} > i < \overline{\Xi} > \overline{\Box} < \overline{\Box} > \overline{\Box} < \overline{\Box} > \overline{\Box} < \overline{\Box} > \overline{\Box} > \overline{\Box} < \overline{\Box} > \overline{\Box}$$

hybrid MD/HD modelling

Introduction

Hybrid MD/HD Introduction The background Mass conservation Momentum conservation Results Conclusions Mercedes-Benz water

The forcefield Thermodynamic

Structure

Dynamics

The system Excess entropy

Conclusions

Results for 2D Lennard-Jones liquid:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

hybrid MD/HD modelling

Introduction

Hybrid MD/HD Introduction The background The model Mass conservation Momentum conservation

Results

- Conclusion
- Mercedes-Ben water
- The forcefield Thermodynamics Structure
- Dynamics
- Dynamical order The system Excess entropy Conclusions
- Acknowledgement

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへ⊙

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つへで

Conclusions

hybrid MD/HD modelling

Introduction

Hybrid MD/HD Introduction The backgrour The model Mass conservation Momentum conservation Poculte

Conclusions

- Mercedes-Benz water
- The forcefield Thermodynamics Structure Dynamics
- Dynamical order The system Excess entropy Conclusions
- Acknowledgement

- Atomistic and continuum representations of liquid can be connected seamlessly and consistently in space and time.
- The domains of each representations can be defined arbitrarily in space and time.
- The conceptual novelty: studying the properties of different representations at the same space and time scale; the flows *between* the representations.
- The advantage in applications: very substantial saving on computation at the HD domain without loosing the atomistic details of the core.

- Outlook: multiple scales, MD \rightarrow HD.

Mercedes-Benz water

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The background The model Mass conservation Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield

Thermodynamic Structure Dynamics

The system Excess entropy Conclusions

Acknowledgement

$$\Phi = \Phi_{LJ} + \Phi_{HB},$$

where Φ_{LJ} is the Lennard-Jonnes potential, Φ_{HB} is the explicit hydrogen bonding term:

$$\Phi_{HB} = \epsilon_{HB} \cdot G(r_{ij} - r_{HB}) \sum_{ij}^{N} G(\vec{i}_k \cdot \vec{u}_{ij} - 1) G(\vec{j}_l \cdot \vec{u}_{ij} + 1),$$

G is the Gaussian function $G(x) = e^{\frac{-x^2}{2\sigma^2}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MB water snapshot

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 回 ト ◆ 回 ト

MB water thermodynamics

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation Momentum conservation

Conclusions

Mercedes-Benz water

The forcefield

Thermodynamics

Structure Dynamics

Dynamical order The system Excess entropy

Conclusions

Acknowledgement

The thermodynamic properties are expressed through K, $\frac{\partial \Phi}{\partial A}$ only: temperature: $T = \frac{2}{3N} \langle K \rangle$, pressure: $P = \rho \ k_B T - \langle \frac{\partial \Phi}{\partial A} \rangle$, isochoric heat capacity

$$\frac{C_V}{Nk_B} = \left(\frac{2}{3} \left\langle K \right\rangle \left\langle K^{-1} \right\rangle + N(1 - \left\langle K \right\rangle \left\langle K^{-1} \right\rangle)\right)^{-1}$$

$$K = \sum_{i=1}^{N} \frac{m\vec{v}_{i}^{2}}{2} + \frac{I\omega_{i}^{2}}{2},$$

where I is the moment of inertia, \vec{v}_i and ω_i are the translational and angle velocities.

$$\frac{d\Phi}{dA} = \frac{1}{2A} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} dx \frac{d\Phi_{ij}}{dx} + dy \frac{d\Phi_{ij}}{dy}.$$

Sar

MB water thermodynamics

Thermodynamics

Dynamics

Dynamical order The system

Excess entropy

Conclusions

Acknowledgement

Figure : Isothermal compressibility β^* , pressure P^* , isochoric heat capacity C_V^* , isothermal expansion coefficient α^* .

イロト イポト イヨト イヨト

Sac

$$g_r^{(2)}(r) = \frac{2V}{N^2} \left\langle \sum_{i < j} \delta(r - |\vec{u}_{ij}|) \right\rangle,$$
$$g_{\phi}^{(2)}(r) = \frac{1}{Z_{ij}} \left\langle \sum_{i < j} z_{ij} \delta(r - |\vec{u}_{ij}|) \right\rangle,$$

$$z_{ij} = \sum_{k=1}^{3} \sum_{l=1}^{3} G(\vec{i}_k \cdot \vec{u}_{ij} - 1) G(\vec{j}_l \cdot \vec{u}_{ij} + 1),$$

$$Z_{ij} = \int_0^\infty \left\langle \sum_{i < j} z_{ij} \delta(r - |\vec{u}_{ij}|) \right\rangle dr,$$

where N is the number of molecules in the corresponding solvation shell, Z_{ij} is the normalization factor.

Acknowledgement

Figure : Radial distribution function. The reference molecule is shown in green. The 'interstitial' water is red.

シック・ ボー・ (ボッ・ (ボッ・ (ロッ

Figure : Orientation contribution as a function of distance.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Acknowledgement

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MB water dynamics

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation Momentum conservation

Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure

Dynamics

Dynamical order The system Excess entropy Conclusions

Acknowledgement

The velocity autocorrelation function:

$$f_v(\tau) = \left\langle \vec{v}(t) \cdot \vec{v}(t+\tau) \right\rangle,\,$$

where $\vec{v}(t)$ and $\vec{v}(t+\tau)$ are translational velocities at time moments t and $t+\tau$.

The rotation velocity autocorrelation function:

$$f_{\omega}(\tau) = \left\langle \omega(t) \cdot \omega(t+\tau) \right\rangle,\,$$

where $\omega(t) = \frac{\partial \phi}{\partial t}$ is rotational velocity.

MB water dynamics

Figure : Velocity autocorrelation functions for MB and SPC models.

Acknowledgeme

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへ⊙

MB water summary

hybrid MD/HD modelling

Introduction

- Hybrid MD/HD
- Introduction The background The model Mass conservation Momentum conservation
- Results
- Conclusions
- Mercedes-Benz water
- The forcefield Thermodynamics
- Dynamics
- Dynamical order The system Excess entropy Conclusions
- Acknowledgement

- Two dimensional water qualitatively and sometimes quantitatively represents the properties of real water.
- Molecular dynamics of the model works well and reproduces the results of Monte Carlo.
- The usefulness of the model: N^2 dependence on system size, easy visualisation.

Sar

Long-range order in water dynamics and its reduction by a peptide solute

hybrid MD/HD modelling

Introduction

- Hybrid MD/HD
- Introduction The backgrour The model Mass conservation Momentum
- conservatio
- Results
- Conclusions
- Mercedes-Benz water
- The forcefield Thermodynamic
- Structure
- Dynamics
- Dynamical order

The system

- Excess entropy Conclusions
- Acknowledgement

Small peptide in explicit water

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Symbolisation of MD simulated water

Multi-point correlations

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamic

Structure

Dynamics

The system

Excess entropy

Conclusions

Acknowledgement

L-long words of symbols:

$$s^L \equiv \{\mathbf{v}_{t-L+1} \dots \mathbf{v}_{t-2} \mathbf{v}_{t-1} \mathbf{v}_t\}$$

The Shannon entropy of words:

$$H(L) \equiv -\sum_{s^L} P(s^L) \log_2 P(s^L)$$

The entropy rate:

$$h_{\mu} \equiv \lim_{L \to \infty} \frac{H(L)}{L}$$

The excess entropy:

$$\mathbf{E} \equiv \sum_{L=1}^{\infty} [h_{\mu}(L) - h_{\mu}]$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ●

Multi-point correlations

hybrid MD/HD modelling

Introduction

Hybrid MD/HD

Introduction The backgroun The model Mass conservation Momentum conservation Results

Conclusions

Mercedes-Benz water

The forcefield Thermodynamics Structure Dynamics

Dynamical order The system

Excess entropy

Acknowledgement

"The excess entropy tells us how much information must be gained before it is possible to infer the actual per-symbol randomness h_{μ} . It is large if the system possesses many regularities or correlations that manifest themselves only at large scales." [D. Feldman *et al*, *Chaos*, **18**, 043106 (2008)]

Sar

Excess entropy of water near peptide

Excess entropy: conclusion

hybrid MD/HD modelling	
Introduction Hybrid MD/HD Introduction	
The background The model Mass conservation Momentum conservation	- Very long range order in water is present, which is significantly perturbed by the peptide.
Results	- The width of the hydration layer, the shell of water molecules affecting the peptide's dynamics, should be extended to
Mercedes-Benz water The forcefield	$\approx 2nm$, not $\approx 1nm$ as usually assumed.
Thermodynamics Structure Dynamics	
Dynamical order The system Excess entropy Conclusions	

Acknowledgement

Acknowledgement

Acknowledgement

hybrid MD/HD modelling	
Introduction Hybrid MD/HD Introduction The background The model Mass conservation Momentum conservation Results	Funding: G8 Research Councils Initiative on Multilateral Research Funding
Mercedes-Benz water The forcefield Thermodynamics Structure Dynamics	