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ABSTRACT   
Using an exactly solvable model a process of modulation of an electromagnetic field in a time-varying medium 
is investigated. A correlation between the Hurst’s index of a transformed electromagnetic signal and its 
complexity is considered for the first time. 
Keywords: Electromagnetic transients, time-varying medium, intermittency, complexity.  
 

1. INTRODUCTION 
 Parametric phenomena in active media have been attracting much attention for a long time in connection with 
the generation and amplification of electromagnetic waves or with the time variation of the medium parameters. 
In the systems with distributed parameters main features of the wave transformation by the medium 
nonstationarity can be revealed when a simple law changes the medium parameters such that an exact solution of 
the problem can be constructed. In this paper the electromagnetic wave transformation in a medium with 
parameters that undergo changes in a form of a finite packet of periodic rectangular pulses is considered. 
Regularity of the transformation is estimated by two characteristics, the Hurst's index [1] and the complexity [2]. 
 

2. WAVE TRANSFORMATION UNDER MEDIUM MODULATION 
We consider an unbounded dielectric dissipative medium, the permittivity and conductivity of which are 
modulated according to the law of a finite packet of  rectangular periodic pulses. This modulation is given by N
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 Here, ( )tθ  is the Heaviside unit function,  is the duration of the period of the parameters change,  is the 
duration of the disturbance interval, in which the medium permittivity and conductivity receive new magnitudes 

T 1T

1ε  and 1σ . Further, we normalize all time variables to a frequency ω  of the initial wave, t tω→ . This wave 
exists before the zero moment of time, the moment when the modulation commences, and is given by the 
function . Each time jump of the medium properties changes the electromagnetic field, 
such that it is described by functions  on the disturbance interval and by 

0 ( , ) exp[ ( )]E t x i t kx= −

nE nF  on the inactivity intervals. 
 After beginning of the modulation by the disturbance interval the initial wave is splitting into two, forward 
and backward, waves ( )[ ]1 1 1exp exp( ) exp( )E st ikx C iq t D iq t= − − + −  with new amplitudes and new frequency 

1
2 2 2(q a s= − )  where 2

1/a ε ε= , 1 0/s σ ωε ε= , and 0ε  is the vacuum permittivity. On the remaining 
undisturbed interval of this first modulation period the field splitting into two waves remains, 

[ ]1 1 1exp( ) exp( ) exp( )F ik A i t B i t= − + − , but the frequency returns to the original one.  
 The field on the other disturbance intervals consists also of two, direct and inverse, waves 

[ ]exp( ) exp( ) exp( )n n nE st ikx C iq t D iq t= − − + −  of changed frequency while the field on the inactivity intervals 

consists of two waves [ ]exp( ) exp( ) exp( )n n nF ikx A i t B i t= − + −  but of the unchanged frequency. Therefore, the 
transformed field at any moment t of  the N-th modulation period is given by the formula   
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 The expressions for the direct and the inverse secondary wave amplitudes are given in [3] where it is also 
shown that the relations between these amplitudes are determined by the ratios: 
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on the inactivity intervals  2 1 2
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12 1q is= − + 21 1q i, s= − − 22 1q is, = + − , and the coefficients are introduced α α α
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As it follows from (3) and (4) the behaviour of the ratios  and  between the amplitudes of the onward and 
the backward waves are governed by the sequence 

Nw Np

 , (7) 2 2
1 4 /(4 )Nr u u r+ = −

which is controlled by the generalized parameter 
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If this parameter  then the sequence  has regular character and the transformed field undergoes a 
parametric amplification with time, Fig. 1a. Otherwise, when 

1u > Nr
1u < , the sequence as well as the field have 

irregular behaviour, Fig 1b, and the latter decreases as the medium possesses the dissipation. 
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Fig. 1. The behaviour of the transformed field with time: a) parametric amplification, b) irregular changing. 

 

3. QUASI-INTERMITTENCY AND HURST’S INDEX 
The irregular behaviour of the field is seen more clearly in the ratios between the amplitudes of the forward and 
the backward waves, given by (3) and (4). These ratios are governed by the sequence , which can have regular 
or irregular behaviour depending on the generalized parameter u. The sequence  behaves regularly if . 
If  the sequence  has irregular character that is there are long intervals in the sequence of the 
modulation periods where  changes almost regularly. After this interval the relatively short intervals of strong 
irregular behaviour of  takes place (upper Fig 2a). More distinct  from 1 leads to more irregular behaviour 
of  (upper Fig. 2b). This phenomenon can be termed "quasi-intermittency" similar to [1].  
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 The presence of the quasi-intermittency can be confirmed by the Hurst’s method [3], according to which the 
time series of  is characterised by the Hurst's index nr H , determined by the asymptotic value of the function  
 ~ ln( / ) / lnn nH R S n  (9) 
where  
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For the white noise (a completely uncorrelated signal) this index equals to . The value 
 is associated with the long-range correlation when the time series exhibits persistence 

(antipersistence). 

0.5H =
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 b) 
Fig. 2. Almost regular (a) and very irregular (b) behaviours of the sequence  and the corresponding Hurst's 

index. 
Nr

 
 The analysis of the sequence  in the considered case shows that the change of the amplitude ratio is 
associated with the uncorrelated process when 

Nr
2 1u < . For example, when 0.98988u ≈  the index H  changes 

between ~0.55 and ~0.45, as illustrated by the lower Fig. 2. When  decreases the behaviour becomes more 
irregular, see the lower Fig. 2b for 

2u
0.18978u = . 

4. SIGNAL COMPLEXITY 
 The  behaviour can be also characterised by a complexity measure [2]. This measure of complexity shows 
how much information is stored in the signal and how much information is needed to predict the next value of 
the signal if we know all the values up to some moment in time. In two limiting cases, when a signal has 
constant value at all times and when the signal is completely random, a complexity is equal to zero in this 
framework because of no information about the previous evolution needed to predict the signal in both cases. All 
intermediate cases have a finite, non-zero value of a complexity. 

Nr

 The algorithm of computing the finite statistical complexity [4] follows the method originated in the works by 
Crutchfield and others and it consists of considering the symbolic subsequences that form the dynamical ‘states’ 
of the system and the time evolution, which is described as transitions between these states with some 
probabilities iP . The finite statistical complexity is calculated by the formula: 
 2logi

i
C P= − iP∑  (11) 

 The dependence of this measure on the modulation period shows a correlation between the complexity and the 
generalized parameter u, Fig. 3. It is seen that the complexity drops to zero when the module of the parameter u 
(the dash-dot sine-like line) becomes greater than 1. In this case the value of the H index is typical for the regular 
behaviour. This is true for both cases when the medium becomes more or less optically dense on the disturbance 
intervals. 
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Fig. 3. The behaviour of the complexity vs the modulation periods for various changes of the permittivity (the 

parameter u is shown by the dash-dot sine-like line). 
 
A correlation exists between the Hurst's index and the complexity of the signal. Fig. 4 shows the behaviour of 
these two characteristics for the sequence  depending on the duration of the disturbance interval. The 
complexity drops to zero when the Hurst's index deviates notably from the value 0.5 that corresponds to regular 
behaviour of the signal. Both characteristics correlate with the generalized parameter u. 
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Fig. 4. The comparison (a) of Hurst's index H (solid line) and the complexity (dashed line) (the parameter u is 
the dash-dot line) and the detailed behaviour (b) of Hurst's index vs the duration of the disturbance interval. 

 

5. CONCLUSION 
 
 The quasi-intermittency that occurs during the wave transformation under the time changes of the medium 
properties can be described by the two characteristics, the Hurst's index and the complexity measure. It is shown 
that these two characteristics correlate. They also correlate with the generalized parameter that controls the 
process of the wave transformation. 
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