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ABSTRACT 
Pulses in the form of the Airy function as solutions to an equation similar to the Schrodinger equation but with 
opposite roles of the time and space variables are derived. The pulses are generated by an Airy time varying field 
at a source point and propagate in vacuum preserving their shape and magnitude. The pulse motion is 
decelerating according to a quadratic law. Its velocity changes from infinity at the source point to zero in 
infinity. These one dimensional results are extended to the 3D+time case for a similar Airy-Bessel pulse with the 
same behaviour, the non-diffractive preservation and the deceleration. This pulse is excited by the field at a plane 
aperture perpendicular to the direction of the pulse propagation.  
Keywords: Airy pulses, decelerating electromagnetic pulses. 

1. INTRODUCTION 

Recently there has been active development in the theory and experimental applications of optical Airy beams 
[1-7]. An Airy beam or Airy wave packet is a wave described by the Airy function y=Ai[ ]x , a special function 

which is the solution to the differential equation '' 0y xy   [8]. The Airy beams are characterised by very 

special properties: they are non-diffractive and accelerating. Among the striking applications of the optical Airy 
beams are the transport of small particles and living cells along a parabolic trajectory and the self-healing 
property of the beam, when the beam form is restored after passing an obstacle [9]. A new way of generating 
Airy beams by using three-wave mixing processes in nonlinear medium has been examined experimentally in 
[10]. 

The detailed analysis of the mathematical aspects as well as physical interpretation of electromagnetic Airy 
beams was done by considering the wave as a function of spatial coordinates only and assuming that their time 
dependence is harmonic, exp( )i t� , [2-8]. Yet, the idea of electromagnetic Airy beams comes from the analogy 

of the paraxial equation describing these beams with the time dependent Schrodinger equation [11], where the 
time variable is replaced with a spatial coordinate. It is worth to emphasize that the solution of the Schrodinger 
equation produces time dependent Airy wave packets in free space [11]. Their features such as the diffraction 
free form and continuous acceleration has been explained on the basis of the semi-classical approximation.  (The 
Airy wave function is known in quantum mechanics for a long time [12] as a solution to the stationary 
Schrodinger equation.) As for the time dependent solution of the three-dimensional electromagnetic problem, the 
possibility of the existence of non-diffractive Bessel (not Airy) waves has been pointed out in [2, 13]. However, 
the three-dimensional solutions to the paraxial equations containing the time derivative do not include the 
parabolic variable responsible for the accelerating feature of the beams. 

In this paper the explicitly time dependent solutions of the electromagnetic problem in the form of an Airy 
pulse are derived and investigated. We show that it is not only possible to find the Airy pulse solution starting 
from the first principles, rather than by exploiting the analogy with the paraxial equation, but also that the 
obtained pulse has the same property of non-diffractive propagation and velocity change without any external 
influences (in vacuum). There are, however, important conceptual differences that lead to the pulse deceleration, 
rather than acceleration as in quantum mechanics. 

2. THE PARAXIAL TEMPORAL EQUATION 

We start with the wave equation, followed from the Maxwell equation, 

 2 2 2( , ) ( , ) 0zz ttE t z c E t z    , (1) 

which describes the electric field of a wave propagating along the z  axis. Substitution of the field in the form 

( , ) ( , ) ikzE t z B t z e , /k c  and under the assumption that '' '2zz zB ikB� , typical for the paraxial 

approximation [14-16], the wave equation is reduced to the form 

 2 22 0i B B B       , (2) 



where the normalised dimensionless variables are 2 2
0/( )z kc t   and 0/t t   with 0t  being the temporal scale, 

0kct   is the dimensionless parameter. Comparing this equation with the commonly considered spatial 

paraxial equation in the x ( 0 0 0/ ,s x x x ct  ), z  ( ) coordinates  

 22 0ssi        (3) 

we see that the longitudinal spatial variables   are the same and the transverse variable s  corresponds to the 

temporal variable   in (2). The equation (3) is considered in the literature as the analogue to the Schrodinger 
equation [11] 

 2 1 2(2 ) ( , ) ( , ) 0xx tm x t i x t         (4) 

from which the Airy wave packet originated in [2] if the temporal variable t  in (4) is replaced by the 
longitudinal variable z  (  in (3)). Thus, the variable z  ( ) along which an electromagnetic wave propagates 

plays the role of time in the electromagnetic phenomenon. As it was shown in [11] equation (4) has a solution in 
the form of a non-spreading wave packet with the envelope as the Airy function 
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This function describes the accelerating wave packet which moves uniformly with the velocity 3 2/ 2x B t m  and 

the constant acceleration 3 2/ 2x B m . Contrary to the equation (3), which describes a beam harmonically 
oscillating in time, the function (5) represents the pulse with a complicated time varying envelope enclosed in 
the Airy function. The Airy function in the solution to (3)  
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describes the inhomogeneous distribution with respect to the spatial coordinates s  and   of the wave paraxial 

propagating along the z  axis but with harmonic temporal variation ( , ) ik z i tE x z e   . 

Our equation (2), derived from the first principle rather than by the analogy with the Schrodinger equation, 
shows that the roles of the time and space variables in the electromagnetic time paraxial equation (2) are 
opposite to those of the Schrodinger equation (4). This destroys the analogy between the equations (2) and (4) 
and, therefore, the direct correspondence between the time and space variables of the Schrodinger equation and 
the space variables of the spatial paraxial equation (3). Thus, we need to solve the equation (2) in order to find 
the time spatial pulse originating from it. 

3. THE SOLUTION OF PARAXIAL TEMPORAL EQUATION 

The solution to the equation (2) can be constructed following the procedure described in [7]. The sought function 
is represented as ( , )( ) iB W e    , where ( )W   and ( , )   are real functions of the argument   and the 

quadratic variable 2
0 / 4a g b         . The parameters a , 0 , g , and b  in   allow changing the 

model. The parameter 1a    determines the movement forward or backward along the spatial axes. The 
parameter g  defines only the scale factor in variables normalization and can be taken 1g  . Substitution of 

( , )( ) iB W e     in (2) gives the Airy equation ''( ) ( ) 0W W     with the solution as the Airy function 

W( )=Ai[ ]  . Choosing 1a    we obtain the solution to the equation (2) as 
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Therefore, the solution (7) describes the field in the propagating pulse  
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This field is uniquely defined in the half-space 2b  , Fig.1a. Starting from the source point 2b  , which 

can be interpreted as a time varying source and at which the field time variation is given by the formula 
2 2 2

0( , 2 ) Ai exp ( / 3)E b b ib b                , the field profile propagates according to the quadratic law 
2 2

0 ( / 2 )b b const        preserving its form. Fig.1a illustrates the lines of propagation of the field equal 



values determined by the parabola 2
0 / 4 b const        (one of the branches for 0const   is shown using 

the solid line in the figure).  
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Figure 1. The pulse propagation: a) the region of definition of the electric field (hatched region); b) the 

propagation of the field equal values (the magnitudes of the envelope is shown on the vertical axes). 
 

The quadratic variable   is positive inside the region bounded by the parabola and negative outside of it. It 

determines where the steep front of the Airy pulse is directed along the movement. The velocity of this 

movement decreases with distance 2 /( 2 )b   , therefore the acceleration 34 /( 2 )b     is negative. Such 

a slowing motion leads to a complete stop as its velocity and acceleration tend to zero at the infinite distance 
from the source. 

4. A FINITE ENERGY PULSE 

The considered Airy pulses are of little practical importance because of their infinite energy. To overcome this 
deficiency it was suggested in [2, 3] to consider the exponentially decaying version at the input of the system. 
Following this suggestion we consider a different boundary condition 

  2 2 2 2
0 0( , 2 ) Ai[ ]exp ( / 3) ( )B b b i b b b                    (9) 

for obtaining the pulse with finite energy. To solve the equation (2) with the boundary condition (9) we represent 

the solution via the Fourier transform 
1

( , ) ( , )
2
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


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  . Then the boundary condition is 

2 2 2 3
0( , 2 ) exp[ ( ) ( / 3) ( ) / 3]B b i b ib b i i          . The equation for the inverse Fourier transform follows 

from (2) 

 2 22 ( , ) ( ) ( , ) 0i B B           (10) 

and its solution satisfying the boundary condition (9) determines the electric field of the pulse 

 ( , )( , ) Ai[ ( , )] iwE u e       (11) 

with 2 2
0( , ) 2 ( / 2 ) ( / 2 )u b i b b            , (12)  

 2 3 2 2 3 2
0( , ) exp ( / 3) ( / 2 ) 2 ( / 2 ) 2( / 2 ) / 3 [( / 2 ) ][ ]w i b b b i b b b i b                        . (13) 

The steep front of the Airy envelope in (11), corresponding to nearly zero moment at the source point, comes 
off the source leaving the space free of the field. 

5. 3D+TIME MODEL 

The described model can be straightforwardly extended to the 3D+time case. If a phenomenon has the 
cylindrical symmetry then the wave equation in a cylindrical system of coordinates takes the form 

  2 1 2 2 2 2 2( , , , ) ( , , , ) 0zz ttE t z c E t z                   . (14) 

The solution to this equation in dimensionless variables is 1( , , , ) ( )Ai[ ( , )]exp[ ( , )]mE r J r u im iw           

where 0/r ct  and 1( , )w    come from (13) by substituting 2 2 2    . This solution describes the 

radiation from an aperture with the following distribution of the field 



  2 2 2 3 2
0 0( , , 2 ) ( )Ai[ ]exp ( / 3) [ ]mE r b J r b ib b b                   . (15) 

This radiation propagates normally to the aperture and slows down with distance to stopping. 
 

  

   
Figure 2. The evolution of the electric field at the point 10    at three instants  0   (left), 10  , and 

100   (right) for m=0 (top) and m=1 (bottom) 

Fig. 2 illustrates the snapshots of the field transverse distribution at the point 10   ( 0 100r  , 

0 2   ) at three instants. These distributions correspond to the radial symmetry (m=0, Fig. 2 top) and to one 

variation in the azimuthal angle (m=1, Fig. 2 bottom) at the aperture ( 1   in both cases). The snapshots at 

0  and 10   show the pronounced inhomogeneous distributions of the field whereas at 100   the field is 

essentially zero that means that the pulse comes off the source and leaves the space free of the field. 

6. CONCLUSIONS 

In conclusion, we derived the time dependent electromagnetic Airy pulses that satisfy the ‘paraxial’ equation 
similar to the Schrodinger equation in which the time and space variables interchange their roles. The solution to 
the electromagnetic equation is the Airy pulse which propagates with deceleration along its trajectory and stops 
at the infinite distance from the source. In the 3D case the similar Airy-Bessel pulse occurs when the radiation is 
excited by the field at the aperture which is perpendicular to the direction of the pulse propagation. If the field at 
the aperture is distributed as ( )mJ r  then the transverse distribution defined by the Bessel function propagates 

from the aperture preserving its form at all distances. 
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