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Hybrid MD/HD: motivation

- Motivation: multiphysics/multiscale (speed up and data
reduction)

- Examples:

– bridging atomistic times and microfluidic mixer times (9
orders of magnitude difference),

– the effects of viscosity and hydrodynamic shear on protein
folding.
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multiphysics/multiscale

 

Zoom-in region

Physical (uniform) space & timeTransformed (zoomed-in) space&time

Example: a 
plane acoustic 
wave coming 
through a 
region of 
molecular-
scale 
fluctuations

AP Markesteijn and SA Karabasov, J. Comput. Phys., 258, 137 (2014)
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Fluctuations in biomolecular systems

Water density around dialanine zwitterion

Question: to what extend the dynamics of water density
(fluctuations) is connected with the dynamics of the peptide
(quantified by its dihedral angles φ and ψ)?
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Water density correlation with the peptide
motion

200 ps

0.8 ps

0 ps

Answer: strongly correlated but only at very specific periods,
when the conformational transitions occur

D Nerukh and S Karabasov, J. Phys. Chem. Lett., 4, 815 (2013)
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The fundamentals: hydrodynamics and
atomistic dynamics

Continuous representation (hydrodynamics)

- All started with macroscopic thermodynamical quantities:
the properties of the system as a whole, the largest possible
scale.

- Describing the system at smaller scales: the properties
become fields changing in time:

ρ(x, t),u(x, t), T (x, t).

Atomistic representation

- The variables are the positions and momenta of the point
masses, the atoms:

{q1, . . . ,qN ,p1, . . . ,pN}
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Connecting the representations

Calculating the continuous density:

ρq(q; x, t) =

N∑
j=1

mδ(qi(t)− x)

It is a function of the molecular coordinates (phase space
variable), which also parametrically depends on x and t.
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Connecting the representations: the scales

How the measurement is done: a probe of volume ∆x is placed at
the point x for a period of time ∆t at time t.

The ‘true’ (measured) value of ρ(x, t) is obtained by overaging
ρq(q; x, t) over ∆x and ∆t.

ρ(x, t) = 〈ρq(q; x, t)〉∆x,∆t
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Connecting the representations

This is MD→HD transformation.

HD→MD - ???
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Describing fluctuations of the continuum

The Landau-Lifshitz Fluctuating Hydrodynamics (LL-FH)
equations are a generalisation of the deterministic Navier-Stokes
(NS) equations:

∂ρ

∂t
+∇(ρu) = 0,

∂ρui
∂t

+∇(ρuiu) = ∇j
(

Πij + Π̃ij

)
,

∂ρE

∂t
+∇(ρEu) = ∇j

[(
Πij + Π̃ij

)
· ui
]

+∇(q + q̃).



Hybrid MD/HD
modelling

Introduction

The background

fields, atoms,
scales, etc...

fluctuating
hydrodynamics

Coupling the
scales

The model

Conservation
laws

Constraining the
dynamics

Results

2D
Lennard-Jones

3D liquid

Conclusions

Describing fluctuations of the continuum

The stress tensor consists of a deterministic part

Πij =− (p− ηV∇u) δij+

η
(
∂iuj + ∂jui − 2D−1∇u · δij

)
and a stochastic part, a random Gaussian matrix with zero mean
and the covariance

〈Π̃ij(r1, t1) · Π̃kl(r2, t2)〉 =

2kBT

[
η (δijδik + δikδjl) +(

ηV −
2

3
η

)
δijδjk

]
δ(r1 − r2)δ(t1 − t2).

This form of correlations follows from the fluctuation-dissipation
theorem, which relates the thermal fluctuations to temperature.
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Describing fluctuations of the continuum

The heat flow is also a sum of the averaged flow

qi = κ · ∂iT

and a stochastic component with zero mean and the covariance

〈q̃i(r1, t1) · q̃j(r2, t2)〉 = 2kBκT
2δijδ(r1 − r2)δ(t1 − t2)
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Describing fluctuations of the continuum

Π̃ij =

√
2kBT

∆x∆t

(√
2η ·Gs

ij +
√
DηV

tr[G]

D
Eij

)

q̃i =

√
2kBκT 2

∆x∆t
Gi
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Biomolecular scales
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Scales coupling: acyclic ‘bottom-up’
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Hybrid MD/HD
modelling

Introduction

The background

fields, atoms,
scales, etc...

fluctuating
hydrodynamics

Coupling the
scales

The model

Conservation
laws

Constraining the
dynamics

Results

2D
Lennard-Jones

3D liquid

Conclusions

Scales coupling: cyclic
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An example of acyclic ‘top-down’ approach

O’Connell Thompson (1995):

dxip
dt

= uip + s

(∑
N mip

MCFD
ui −

∑
N mipuip∑
N mip

)
,

d

dt
uNewtonip =

Fip
m

- CFD = Deterministic N-S model

- Application of repulsive barrier to retain particles

- Not necessarily conserves macroscopic momentum balance

- Not fully coupled (no feedback from MD to CFD)

see our poster for our version of ‘top-down’ coupling
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Our framework

1D view 

- The end domains HD and MD are described by purely
hydrodynamic and purely Newtonian equations of motion
respectively.

- In the hybrid domain the fluid consists of two “phases”:
HD phase is a continuum water with volume fraction s = V1

V
,

MD phase is a phase that incorporates atoms, its volume
fraction is (1 − s).

- The parameter s = s(x) is the function of space coordinates,
such that s = 1 in the HD domain, s = 0 in the MD domain.

A Markesteijn, S Karabasov, A Scukins, D Nerukh, V Glotov, and V

Goloviznin, Phil. Trans. R. Soc. A, A 372 (2014)
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Mass conservation

For HD phase:
∂

∂t
(sρ) +

∂

∂xi
(uisρ) = J,

For MD phase:

∂

∂t

(1− s)
∑

p=1,N(t)

ρp

+
∂

∂xi

(1− s)
∑

p=1,N(t)

ρpuip

 = −J,

where ρp = mp/V is the density of MD particles and J is the
birth/death rate due to the coupling between the phases.

ρ̃ = sρ+ (1− s)
∑
p=1,N(t) ρp
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Conservation of momentum

For HD phase:

∂

∂t
(suiρ) +

∂

∂xj
(ujuisρ) = sFi + J2,

where J2 is the HD-MD interaction force and Fi is the
hydrodynamic force.

For MD phase:

∂

∂t

(1− s)
∑

p=1,N(t)

ui,pρp

+
∂

∂xj

(1− s)
∑

p=1,N(t)

ρpui,puj,p


= (1− s)

∑
p=1,N(t)

Fi,p − J2

ρ̃ũj =
[
sρuj + (1− s)

∑
p=1,N(t) ρpujp

]
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Restricted dynamics

The deviations of ρ̃ are driven towards the correct value∑
p=1,N(t) ρp:

D

Dt0

ρ̃− ∑
p=1,N(t)

ρp

 = L(ρ) ·

ρ̃− ∑
p=1,N(t)

ρp

 ,

where D
Dt0
· = ∂

∂t ·+∇(u·),

and similarly for ũj ρ̃:

D

Dt0

ũj ρ̃− ∑
p=1,N(t)

ujpρp

 =L(u) ·

ũj ρ̃− ∑
p=1,N(t)

ujpρp


+ s∇j

(
Πij + Π̃ij

)
.
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Restricted dynamics

ρ̃ is diffused towards
∑
p=1,N(t) ρp:

L(ρ)·

ρ̃− ∑
p=1,N(t)

ρp

 =
∂

∂xi

s(1− s)α ∂

∂xi

ρ̃− ∑
p=1,N(t)

ρp

 .

ũj ρ̃ is diffused towards
∑
p=1,N(t) ujpρp:

L(u)·

ũj ρ̃− ∑
p=1,N(t)

ujpρp

 =

∂

∂xi

s(1− s)β ∂

∂xi

ũj ρ̃− ∑
p=1,N(t)

ujpρp

 .
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The sources J and J2

From these constrains the sources J and J2 can be found:

J = s
∂

∂t

∑
p=1,N(t)

ρp +
∂

∂xi

sui ∑
p=1,N(t)

ρp

+

∂

∂xi

s(1− s)α ∂

∂xi

ρ̃− ∑
p=1,N(t)

ρp

 ,

J2 = s
∂

∂t

∑
p=1,N(t)

ρpujp +
∂

∂xi

sui ∑
p=1,N(t)

ρpujp

− sFj+
∂

∂xi

s(1− s)β ∂

∂xi

ũj ρ̃− ∑
p=1,N(t)

ujpρp

 ,
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Modified MD equations

For known J and J2 MD equations are modified to preserve
macroscopic conservation laws:

dxip
dt

= uip + s(ui−uip) + s(1− s)α ∂

∂xi

ρ̃− ∑
p=1,N(t)

ρp

 1

ρpN(t)
,

dujp
dt

= (1− s)Fjp/ρp + sFj/ρp/N(t)

+
∂

∂xi

s(1− s)α ∑
p=1,N(t)

ujp/N(t)
∂

∂xi

ρ̃− ∑
p=1,N(t)

ρp

 1

ρpN(t)

− ∂

∂xi

s(1− s)β ∂

∂xi

ũj ρ̃− ∑
p=1,N(t)

ujpρp

 1

ρpN(t)
,
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Results: 2D Lennard-Jones liquid

strong coupling: s = 0.8
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Results: 2D Lennard-Jones liquid

weaker coupling: s = 0.6
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Velocities at various s
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Results: 3D Lennard-Jones liquid

Convergence of fluctuations towards the same limit



Hybrid MD/HD
modelling

Introduction

The background

fields, atoms,
scales, etc...

fluctuating
hydrodynamics

Coupling the
scales

The model

Conservation
laws

Constraining the
dynamics

Results

2D
Lennard-Jones

3D liquid

Conclusions

Results: 3D Lennard-Jones liquid

Convergence of fluctuations towards the same limit
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Results: SPC water

Constant coupling across the domain
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Results: Lennard-Jones liquid

Variable coupling: atomistic core and continuum bulk
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Results: peptide in water

The atomistic core can move with the peptide
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Conclusions

- Atomistic and continuum representations of liquid can be
connected without artificial barriers or ad hoc correction
forces in space and time.

- The domains of each representation can be defined arbitrarily
in space and time.

- Challenges: multiphysics (non-stationary MD +
hydrodynamics), multiscale computing (efficient multi
space-time algorithms in parallel environment).
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Outlook: porcine circovirus single protein
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Outlook: porcine circovirus capsid
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Thank you.
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